
Collaborative Workspace Awareness in
Browser-Based 3D Environments

Christian Elsässer

M A S T E R A R B E I T

eingereicht am
Fachhochschul-Masterstudiengang

Interactive Media

in Hagenberg

im Oktober 2016

© Copyright 2016 Christian Elsässer

This work is published under the conditions of the Creative Commons
License Attribution–NonCommercial–NoDerivatives (CC BY-NC-ND)—see
http://creativecommons.org/licenses/by-nc-nd/3.0/.

ii

http://creativecommons.org/licenses/by-nc-nd/3.0/

Declaration

I hereby declare and confirm that this thesis is entirely the result of my
own original work. Where other sources of information have been used, they
have been indicated as such and properly acknowledged. I further declare
that this or similar work has not been submitted for credit elsewhere.

Hagenberg, October 18, 2016

Christian Elsässer

iii

Contents

Declaration iii

Abstract vii

Kurzfassung viii

1 Introduction 1

2 State of the Art 3
2.1 3D graphics . 3
2.2 Browser-based applications 3
2.3 Browser-based 3D technology 4
2.4 Collaborative workspaces . 4

2.4.1 Strict WYSIWIS . 4
2.4.2 Relaxed WYSIWIS . 5

2.5 Workspace awareness in 3D environments 5
2.5.1 Methods . 6
2.5.2 Alternate views . 7
2.5.3 Real-life implementations 8

2.6 Workspace awareness in non-3D environments 8
2.7 Related work . 9

3 Own Approach 10
3.1 Environment . 10

3.1.1 A browser-based approach 10
3.1.2 Requirements . 11

3.2 Methods . 12
3.2.1 Visual embodiments 12
3.2.2 Embodiment enhancements 14

4 Technical Design 19
4.1 Evolution of features . 19
4.2 Technologies . 19

4.2.1 Meteor . 20

iv

Contents v

4.2.2 MongoDB . 20
4.2.3 Three.js . 20

4.3 Mode of operation . 21
4.3.1 New user connects . 21
4.3.2 Download 3D model and texture 21
4.3.3 Request name from user 21
4.3.4 Render 3D scene . 22
4.3.5 Update user data in database 22
4.3.6 Fetch other users’ data 23
4.3.7 Update 3D scene with other user’s data 23

5 Implementation 24
5.1 Initializing the 3D workspace 24
5.2 Importing an object . 27
5.3 The user . 28
5.4 Toggling the awareness tools 29
5.5 Awareness tools . 30

5.5.1 The animate function 30
5.5.2 The updateEmbodiment function 32
5.5.3 The insertEmbodiment function 32
5.5.4 3D cursor . 35

6 Evaluation 38
6.1 Methodology . 38

6.1.1 Step 1 . 38
6.1.2 Step 2 . 38
6.1.3 Step 3 . 42
6.1.4 Step 4 . 42

6.2 Aggregated test data . 43
6.2.1 Step 2 . 44
6.2.2 Step 3 . 45
6.2.3 Step 4 . 45

6.3 Analysis . 46

7 Conclusion 50
7.1 Outlook . 50

A Content of the CD-ROM/DVD 52
A.1 PDF-Files . 52
A.2 Online Literature . 52
A.3 Other . 52

References 53
Literature . 53

Contents vi

Online sources . 53

Abstract

In collaborative applications there is always a loss of information compared
to face to face situations. Tools for workspace awareness try to compensate
this by providing additional information and are therefore an important
aspect of collaborative 3D applications. But especially in the emerging field
of web-applications academic insights on collaborative workspace awareness
in 3D space are hardly to be found. As a result, the few tools which are
available today provide none or, sometimes worse, poorly done workspace
awareness tools. This thesis describes existing and, in the course of working
on this thesis, refined tools for workspace awareness and evaluates them in a
practical way by testing the tools within a collaborative 3D web-application.
The results are then considered to build up a basic view on how workspace
awareness tools can be utilized in an effective way.

vii

Kurzfassung

In kollaborativen Anwendungen wird, im Vergleich zu persönlichem, gemein-
samen Arbeiten, weniger Information transportiert. Methoden zu einer kla-
reren Wahrnehmung des Arbeitsraumes versuchen das auszugleichen, in-
dem sie zusätzliche Informationen zur Verfügung stellen. Sie sind daher von
großer Bedeutung in kollaborativen 3D Anwendungen. Aber besonders im
immer wichtiger werdenden Bereich der Web-Applikationen ist die Erfah-
rung mit Methoden zur Wahrnehmung innerhalb kollaborativer Arbeitsum-
gebungen noch gering. Daraus resultiert, dass jene wenigen Applikationen
welche in diesem Sektor verfügbar sind keine, oder manchmal noch schlech-
ter, unzureichend ausgeführte Hilfsmittel für diese Art der Wahrnehmung
bieten. In dieser Thesis werden existierende und im Rahmen der Arbeit wei-
terentwickelte Hilfsmittel für eine klare Wahrnehmung des Arbeitsraumes
beschrieben und auf praktischem Wege getestet, indem sie in einer kollabo-
rativen 3D Web-Applikation Anwendung finden. Unter Berücksichtigung der
Ergebnisse dieser Tests wird anschließend versucht, einen Überblick darüber
zu geben wie solche Hilfsmittel effektiv eingesetzt werden können.

viii

Chapter 1

Introduction

Nowadays it is common for people to work together despite being geograph-
ically separated. Information technologies offer great ways of overcoming
this by introducing digital working environments. To successfully commu-
nicate remotely it is immensely helpful to know exactly what the other
members of a meeting are talking about. The field of 3D graphics is par-
ticularly hard to collaborate in online because of the complex nature of the
projects. Therefore, a visually representation not only of the scene itself but
of everyone viewing and editing it greatly enhances communication. The
ability to perceive the other users inside a workspace is called collaborative
workspace awareness. Especially in the field of browser-based collaborative
3D workspaces there are seldom any awareness tools available which can be
interpreted as a lack of practically tested methods or lack of consciousness
for the importance of collaborative workspace awareness tools. The goal of
this thesis is to build upon existing methods for collaborative workspace
awareness in 3D space, include these methods into a web-application and
refine them where reasonable. After a practical test with multiple users the
results shall be evaluated and discussed.

Structure of this thesis: The thesis is structured in six chapters. Fol-
lowing this introduction, chapter 2 provides insights on the used vocabulary
and introduces the basics of collaborative workspace awareness. Chapter 2
ends with a short description of related work. Chapter 3, covers the concepts
behind the testing environment and the implemented awareness methods.
Based on the concepts from chapter 3, the following chapter 4 describes the
thoughts that went into the structure of the developed application. Chap-
ter 5 provides detailed information of how the application and especially the
integrated collaborative workspace awareness methods were implemented.
Chapter 6 describes how the evaluation was approached, the data which
was gathered and contains an analysis of this data. Last but not least there
is chapter 7 which draws some conclusions from the preceding chapters, con-

1

1. Introduction 2

tains personal thoughts of the author and provides a short lookout of where
things could be going in the future.

Chapter 2

State of the Art

The following pages will give an overview of the necessary foundations, cur-
rent state of the art and exemplary approaches in the field of workspace
awareness. Due to the fact that there are very few tools which allow proper
collaborative viewing in three-dimensional space, part of the chapter will
address related approaches in well-established non-three-dimensional appli-
cations. This section will very shortly describe the most important termi-
nology:

• 3D graphics opposed to stereoscopy,
• browser-based 3D technology,
• collaborative workspaces,
• the WYSIWIS concept.

2.1 3D graphics
Nowadays the term 3D can introduce some confusion when not explained
properly. In this thesis, when not mentioned otherwise, the term 3D is used
for objects and scenes in a three-dimensional space which are rendered onto
a standard two-dimensional computer display as it is done in visualizations
or video games. Cinematic technologies like, for instance stereoscopy, which
are meant to trick the human brain into interpreting depth and perspective
in multiple two-dimensional images will not be of any concern.

2.2 Browser-based applications
When designing an application, a common consideration is whether to de-
velop it as a native or browser-based application. Designing an application
to run in a web-browser can have unique advantages as that they do not
need to be installed on a user’s system, are by nature independent from the

3

2. State of the Art 4

operating system and already base on an established server client relation-
ship which can be used to store data or outsource performance-heavy tasks
to the server. The downside of browser-based applications is of course gen-
eral performance which is bound to the executing browser and accessibility
of hardware as the application runs in a sand-boxed environment.

2.3 Browser-based 3D technology
When it comes to native, browser-based, three-dimensional content there
is hardly any relevant alternative to WebGL. By native it is meant that
there is no plugin needed for rendering 3D content like there is for technolo-
gies as Flash1, Silverlight2 or Unity3. WebGL is a highly efficient variant
of OpenGL targeted towards web-browsers which is widely supported on
modern browsers. Multiple JavaScript libraries are available, dealing with
the complexity of WebGL to accommodate new users or help with recurring
tasks. The full standard, documentation and other useful information can
be found on the website of the Khronos Group4.

2.4 Collaborative workspaces
A collaborative workspace enables multiple users to view or edit data re-
motely at the same time. Such workspaces are usually categorized as relaxed
WYSIWIS5 or strict WYSIWIS as described by Mark Stefik in [4].

2.4.1 Strict WYSIWIS

Good examples of strict WYSIWIS systems can be found in any screen
sharing software. One person, the host, will share his or her screen to one
or multiple other persons, the clients. The host is the only one actually
interacting with the system while an exact visual representation of data, as
seen by the host, is transmitted to the clients. An exemplary visualization
can be seen in figure 2.1. Especially for three-dimensional environments a
lot of potential is lost by this approach as the visual representation of a 3D
space on a computer display is always two-dimensional. So for the clients
there is basically no difference between a strict WYSIWIS system with two
or three dimensions.

1Adobe Flash, formerly Macromedia Flash was one of the first browser-based technolo-
gies for advanced multimedia content (http://www.adobe.com/products/flashplayer.html).

2Silverlight is a lesser known alternative to Adobe Flash developed by Microsoft (https:
//www.microsoft.com/silverlight/).

3Unity is a technology for browser-based multimedia content focused on gaming (https:
//unity3d.com/).

4https://www.khronos.org/webgl/
5WYSIWIS – What You See is What I See.

http://www.adobe.com/products/flashplayer.html
https://www.microsoft.com/silverlight/
https://www.microsoft.com/silverlight/
https://unity3d.com/
https://unity3d.com/
https://www.khronos.org/webgl/

2. State of the Art 5

Figure 2.1: Example for strict WYSIWIS. Every user has exactly the same
view.

Figure 2.2: Example for relaxed WYSIWIS. Every user sees the same object
but has an individual point of view, controlled by himself or herself.

2.4.2 Relaxed WYSIWIS

Contrary to strict WYSIWIS there is usually no host in a relaxed WYSI-
WIS system. The relaxed variant is much more based on a natural way of
collaboration and can be imagined as multiple people sitting together look-
ing at the same object. Still, everybody is seeing the same object, thus the
same data but is free to look at it from any direction he or she wants, as
exemplary depicted in figure 2.2. Especially in such relaxed WYSIWIS sys-
tems it is important to think about workspace awareness as it is not certain
that everybody can actually see what one person is referring to from their
individual points of view.

2.5 Workspace awareness in 3D environments
A lot of research has already been done in the field of workspace aware-
ness. Especially Carl Gutwin and Jeff Dyck did not only find very interest-
ing methods to establish workspace awareness in three-dimensional spaces,
which will be discussed later on, but also found a comprehensive way of
describing what workspace awareness actually means. In [2] they suggest to
seek the answer for awareness in answering three simple questions:

• Who are the other users?
• Where are the other users?

2. State of the Art 6

Figure 2.3: Exemplary embodiment. The user is visually represented by a
stylized camera.

• What are the other users looking at?
As they further formulate, Gutwin and Dyck see the problem with awareness
in the loss of information in virtual systems. Answering those three primary
questions in real-life is easy as there is much more data available. Just to
name a few, a wide field of view, very good depth perception and localized
hearing help to be aware of all the other people in the room. In a virtual
system information like this is not available to the human brain, which is
why it will lose track of the other users quickly. The solution to this lack of
information can be described as simple as providing more information about
the surrounding.

2.5.1 Methods

As Carl Gutwin and Jeff Dyck are one of the very few suggesting practi-
cal, comprehensible methods, a short introduction about those methods will
follow. For further information about those methods see [2].

Embodiments

An embodiment is any kind of visual representation of a user. Usually im-
plemented as a stylized camera, an eye or any other descriptive symbol. An
embodiment is visualizing the position in 3D space of the user it represents
and can also visualize the direction in which the user is facing, if the imple-
mentation allows so. An example for a very simple but efficient embodiment
can be seen in figure 2.3.

2. State of the Art 7

Figure 2.4: Exemplary embodiment enhancement. The user’s name is added
to his or her embodiment.

Embodiment enhancements

Embodiment enhancements can be any additional information supporting
the embodiment. A simple enhancement could be the user’s name written
next to the embodiment or an additional geometrical element to prolong the
embodiment’s visibility even if it is off-screen. A very simple example for an
embodiment enhancement is depicted in figure 2.4.

Participant list enhancements

A participant list is considered standard in all collaborative applications and
therefore not listed separately. But just like any three-dimensional embodi-
ment the list entry can provide additional information. Coloring the name to
visualize the activity status of a user is already an enhancement. Enhance-
ment in the participant list can go as far as having a small frame beside the
name where the view of this user is rendered in real-time.

2.5.2 Alternate views

In addition to every user’s individual view alternate views can be imple-
mented to give a better understanding of the scene as a whole. An aerial
perspective or bird’s-eye view is comparatively easy to implement and can
make a big difference in being aware of the other users. In figure 2.5 an aerial
perspective is rendered in the upper right corner to better understand the
positions of each object and embodiment. The drawback of alternate views
on the other hand is clearly the additional performance when those alternate
views are drawn with the same details and objects as the main view, which
is necessary in most cases.

2. State of the Art 8

Figure 2.5: Exemplary alternate view as aerial perspective of a scene with
a cube and two users, embodied by stylized cameras.

2.5.3 Real-life implementations

So far there were only very few applications which could be described as
real collaborative 3D workspaces. None of them has had enough success to
get to a wide audience and as it seems they have been abandoned by their
developers. Therefore it is almost impossible to find real life examples of
implemented methods for workspace awareness in 3D space.

2.6 Workspace awareness in non-3D
environments

In non-3D environments on the other hand there are a lot of collaborative
applications, surprisingly most of them browser-based which, intentionally
or not, implement methods of workspace awareness quite well. In principle
every chat client implements participant list enhancements like a connection
status, personal statuses or indicators whether a message has been received
or read. The space holding the messages can be seen as the actual workspace,
where most chat clients today render the profile picture of the person who
posted that message next to it which basically is an embodiment of that
user. Some clients also add the users name to that profile picture which
then is an embodiment enhancement. More similarities can be found when
looking at specific examples.

Google Docs: As there are so many examples of well implemented work-
space awareness methods in non-3D applications, I would like to mention
Google Docs6 as it is a relatively complex application, which is nonetheless

6Google Docs is a simplified, browser-based alternative to parts of the Microsoft Office
suite. Additionally to being free it allows multiple users to edit a file simultaneously. More

2. State of the Art 9

Figure 2.6: Google Docs is one of Google’s collaborative tools. Embodiment
enhancements and user list can be seen in this screenshot.

widely and successfully used by non-experts. When investigating its fea-
tures, with the principles of Gutwin and Dyck in mind, all three questions
can be easily answered by the provided tools. Embodiments, embodiment
enhancements and participant list enhancements are tightly integrated and
are, intentionally or not, very helpful at being aware of the other users. A
screenshot of Google Docs is provided in figure 2.6. Note that the success
of the Google Docs application is due to the implementation of those prin-
ciples but it can for sure be said, that a very example software uses those
principles which supports their applicability.

2.7 Related work
A related but quite differently implemented version of some awareness meth-
ods, which will be addressed later on, is the Televiewpointer developed by
Agustina and Chengzheng Sun. In [1] they present their tool where it is de-
scribed like a combination of the nose ray, introduced by Dyck and Gutwin
and a 3D cursor. The Televiewpointer is implemented on top of CoMaya7,
which is an attempt at bringing collaborative features into Autodesk Maya8.

information can be found in [5].
7http://cooffice.ntu.edu.sg/comaya/
8http://www.autodesk.de/products/maya/overview

http://cooffice.ntu.edu.sg/comaya/
http://www.autodesk.de/products/maya/overview

Chapter 3

Own Approach

This chapter covers the implemented awareness methods including the re-
finements that went into them as well as the considerations towards the
testing environment.

3.1 Environment
It is a well-established practice to develop a testing environment before
designing the tools it will contain. This way possible implementation-issues
of those tools can be foreseen and appropriate adaptions can be planned
beforehand.

3.1.1 A browser-based approach

As mentioned in the title and foregone pages the awareness tools shall be
tested against a browser-based environment, i.e., tested in an application
which runs in a web-browser. With the rise of web-based applications in
the last decade, which is still going on today, the advantages of running an
application inside a browser can be experienced in a lot of fields. Where
native applications need to be installed, permanently occupy space and are
prone to the user not updating the software, a web-application can be used
on demand and always in its latest version. Another advantage to be con-
sidered is the possibility of using an HTML/CSS user-interface which allows
for fast, clean and flexible development. To be considered collaborative the
environment should ideally already have a good concept of real-time data
exchange established to ease the implementation process. It was clear from
the beginning that to reach the goal of a good testing environment multiple
users should use the software at the same time. An alternative approach
could have been to simulate or record users. Arguably this would have cre-
ated a more homogenous testing environment with everyone experiencing
the exact same situations but would also have taken away the experience

10

3. Own Approach 11

of having real users which will react to the test-person’s actions. In the end
the multi-user approach was chosen to have the user experience a situation
close to real life usage at the cost of having slightly different situations.

3.1.2 Requirements

Before implementing or even designing the application the specific require-
ments it would have to satisfy needed to be defined.

Flexible in number of users

As different group sizes will be testing the awareness methods during evalu-
ation it is of importance for the application to allow users to join and leave
a session at any time.

Realtime

Realtime updates are a must have for this environment. Realtime in this con-
text means every change to a dataset from any client needs to be transferred
to the server and from there to all other clients within 33 milliseconds re-
sulting in a refresh-rate of 30 fps. Especially server-side JavaScript solutions
offer features which can be of great help with this.

3D workspace

As the title says the application will of course need to display three-dimen-
sional data. While the question for a 3D standard technology is still on-
going in native applications surprisingly there is a clear frontrunner in the
much younger segment of web-applications. WebGL benefits of quite a few
JavaScript libraries which are easy to use and still allow for very deep con-
trol where it is needed. This fact as well as its very good performance make
WebGL the number one choice for any ambitious web-based 3D project.

Relaxed WYSIWIS

The workspace should honor the relaxed WYSIWIS concept. This makes
keeping the data on the server up to date more challenging because updates
will be pushed from any client multiple times a second and need to be pushed
to the other clients rapidly while ensuring the integrity of the database.

Simple to change and extend

As the implementation will involve some experimenting it is important for
the environment to be easily extendable. At this point using a framework
and not building the application from scratch seems to be the better option.

3. Own Approach 12

Ability to turn the awareness tools on and off

For easier and focused testing all awareness tools should be implemented in
a way which allows to turn them on and off during runtime for each user
individually.

3.2 Methods
The focus of this thesis lies on the awareness methods which will be evaluated
in chapter 6. The presented methods are based strongly on the methods
described by Carl Gutwin and Jeff Dyck in [2] but adapted where it seemed
reasonably. The next sections will introduce those methods.

3.2.1 Visual embodiments

Visual embodiments represent probably the most important category as
most of the other methods will base on some kind of visual embodiment.
When looking at implementations of visual embodiments in other applica-
tions it quickly comes to mind that the type and style strongly depends on
the workspace. Where collaborative text-processing uses a cursor for every
user, collaborative spreadsheet software lets every user mark an individual
cell. So in successful applications users are visually represented by the same
kind of embodiment they are used to see in the non-collaborative versions of
those individual applications. But in a 3D suite there is no visual represen-
tation of the user as he is operating in ego-perspective mode. The next best
thing in 3D applications is likely the camera which can be placed in a 3D
scene. Different ways of depicting a camera object can be seen in figure 3.1.

A very interesting detail can be found when looking at the character-
istics of the representation. Where Maya uses a relatively detailed object,
Blender1 focuses on a very reduced frustum and Cinema 4D2 seems to try
getting the best of both worlds. In the early development stages for this
thesis the visual embodiment of the user was very much on the abstract side
with a camera model very similar to Blender. This seemed to be a good
solution until the first feedback of people with no 3D design background
came back. The feedback was very skeptical and looking back the camera
approach was not only confusing for some users but formally no user embod-
iment. It was an embodiment of the user’s perspective. After this conclusion
the camera approach was replaced by a more user-oriented design. A styl-
ized head and upper body found much wider acceptance and was instantly
recognized by everyone. Both approaches are shown in figure 3.2. Although
one could argue that from this embodiment an observer could not even know
where the frontside and backside is, I think this should not even be strictly

1http://www.blender.org
2http://www.maxon.net/de/products/cinema-4d-studio.html

http://www.blender.org
http://www.maxon.net/de/products/cinema-4d-studio.html

3. Own Approach 13

Figure 3.1: Visual representation of camera objects across different appli-
cations. From left to right: Maya, Cinema 4D, Blender.

Figure 3.2: On the left the first visual embodiment design strongly oriented
by Blender’s approach. On the right the latest design which is more focused
on the user.

the responsibility of the embodiment but of additional visual aids. This is
where embodiment enhancements come in.

This kind of embodiment is very good at depicting a user’s position
and also at giving an idea about his rotation but only when it actually is
currently inside the view port. A very simple way of making sure that the

3. Own Approach 14

Figure 3.3: A very simple list of users without any enhancements.

amount and identity of present users is always clear at first sight can be a
user list. When a user joins a session he simply enters a name and will then
be listed on the right hand side of the screen together with all other users
currently in this session as seen in figure 3.3.

3.2.2 Embodiment enhancements

In the last paragraphs it was mentioned that a visual embodiment is very
important but it has to be enhanced with additional aids to give a good
impression about the user it is embodying. It was decided to implement
three different embodiment enhancements for different purposes.

Frustum

In the comparison of different camera representations in figure 3.1 can be
seen that Cinema 4D tries to combine a camera with arguably unnecessary
details with a frustum to enhance the data it carries with the viewing angle.
This approach started with the same idea. During development the question
came up how big the frustum should be. The viewing angle defined how wide
the frustum had to be at any given distance but the size of the frustum can
also carry additional information. At last it was decided that the viewing
plane should be at the near clipping3 plane of the camera. This way an
observer could see when a user is too close to an object to see it. This can
also come in handy when looking inside of objects to see how far inside a user
is looking. Last but not least the viewing frustum also indicates in which
direction the user is looking. This solves the problem mentioned with the
visual embodiment in section 3.2.1 to a point where not only position but
also rotation and viewing angle of a user is unambiguous. The advantages
of enhancing an embodiment with a frustum can be seen in figure 3.4

3Clipping is a term which describes the hiding of objects too near or too close to the
camera to prevent display errors and improve performance.

3. Own Approach 15

Figure 3.4: The user embodiment is enhanced with a frustum to indicated
rotation, viewing angle and near clipping.

Figure 3.5: The name below the user embodiment identifies the user.

Names

At this point the visual embodiment of a user still lacks any identity. The
first possibility which comes to mind when thinking about possible ways of
enhancing an embodiment with identity data is simply adding an identifier,
in this case the name of the user, to it. After some trial and error, it was
decided to display the name as a three-dimensional text element below the
embodiment as depicted in figure 3.5 because this way it is obviously vi-
sually joined to a single embodiment. When placing it above or beside the
embodiment its belonging was not clear once distances between users got
smaller.

Nose ray

The concept of a nose ray is to start from the center of the user embodiment
and draw a line, i.e., a ray pointing into his viewing direction. In contrast to
the frustum, the nose ray is intentionally very long and helps to be aware of
users which are not directly visible because they are off-screen or covert by

3. Own Approach 16

Figure 3.6: An embodiment enhanced with a nose ray.

Figure 3.7: Color coding providing fast identification and a clear overview.

other objects. This cannot be accomplished with a frustum as the frustum
widens with progressing distance to the user it belongs to. At some point
the frustum would be wider than the viewport of an observer and therefore
rendered useless. Another advantage of a nose ray is its minimalistic visual
footprint which allows to obtain a good and easily understandable overview
even with many users. Regarding viewing direction and orientation a nose
ray provides all the advantages a frustum provides. The nose ray, as it was
implemented, is shown in figure 3.6

Color coding

Color coding is an easy way to correlate different information like the user’s
name in a list to its 3D embodiment. It is not necessarily bound to the

3. Own Approach 17

embodiment but can also affect the embodiment enhancements which is
why it is not considered a visual embodiment enhancement in this thesis.
It does not work without other enhancements or multiple embodiments per
user, but rather as an additional awareness aid. For this implementation it
was decided to go with coloring only the embodiment enhancements because
of the prominent embodiments. This still offers an easy identification at first
sight without overdoing the colorfulness of the interface. In figure 3.7 the
situation is clear although the nose rays are the only active enhancements.
For the implementation it was decided to go for a predefined set of colors
which would be assigned randomly to a new user joining a session. Of course
this color then has to be locked while the user is active in the session because
multiple assignments would render color coding useless.

Headlight

In contrast to Carl Gutwin and Jeff Dyck who describe headlights as an em-
bodiment enhancement in [2], I see it as a separate method for awareness.
This is mostly due to the fact that the headlight does not affect the em-
bodiment itself in any way but its environment. The concept behind it is to
place a light inside or near the embodiment which will affect the surround-
ing objects, indicating distance and position inside and outside an observer’s
viewable area. Additionally, coloring those lights according to a color code
can provide information about identity. While in its original concept by
Gutwin and Dyck the headlight was described as a spotlight, therefore cre-
ating a directional light which would be pointed into the viewing direction
of a user it was decided to implement the light in this application as a point-
light to emphasize its ability of giving positional information at the cost of
losing the information about rotation which on the other hand is already
thoroughly displayed through the frustum and the nose ray. See figure 3.8
for the headlight.

3D cursor

The remote 3D cursor tries to display a user’s cursor in all other users’ 3D
viewport. Because of the cursor only being a two-dimensional input it pro-
vides no data for the user’s local Z axis. This is compensated by a raytracing
technique which shoots a ray at the unprojected position of the cursor. If the
ray hits an object the 3D cursor-object, basically an unshaded small sphere,
for this user is moved to that 3D-position. With multiple positional updates
a second, areas and details can be pointed out to other users. An example
can be seen in figure 3.9 where the blue user positioned the cursor at the left
side of the guitar object’s bridge. Other users can see this as a blue dot. The
color coded 3D cursor is a good example of how different awareness methods
work together as it would require additional visuals like a line connecting it

3. Own Approach 18

Figure 3.8: A light inside an embodiment lighting the object next to it.

Figure 3.9: The blue dot indicates the user’s cursor. Color coding helps to
identify to which user the cursor belongs.

to the embodiment to signal its belonging if there would be no color coding.

Chapter 4

Technical Design

This chapter describes the thoughts that went into the structure of the devel-
oped application. Section 4.1 contains a short history of how the application
evolved. Section 4.2 describes the technologies, which were used to build it
and section 4.3 gives insights on the application’s internal structure.

4.1 Evolution of features
The testing environment was developed during the third term of the mas-
ter’s degree and continuously improved during the implementation of the
awareness methods. The functions of the environment actually decreased
during the fourth term. At the beginning it allowed users to register, login,
have multiple sessions and invite other users to those sessions. Although
those features were already implemented and working it turned out to be
more of a distraction than a help to have these features which is why they
were ultimately removed from the application. At the time of the evalua-
tions the user management was substituted with a much simpler mechanism
which only allowed a newly connected user to enter a name and join one
global session. But a detailed look into this will be given in the following
paragraphs of this chapter.

4.2 Technologies
The testing environment builds upon established tools to take advantage of
well implemented, ready to use functions and save time for the core topic.

19

4. Technical Design 20

Figure 4.1: Although meteor applications try to blur the line between client
and server as much as possible [6] the structure of the test environment needs
slightly more separation to work properly.

4.2.1 Meteor

With Meteor1 it is possible to develop very rapidly. As the same JavaScript
code can be run on the server and client and reactive data storage and trans-
fer is already included, Meteor provides valuable features for this application
out of the box. Through its asynchronous mode of operation Meteor fits the
requirements to a framework for this testing environment very well although
the fact that meteor is trying to bring server- and client-code together in a
single codebase [6] can have slight impacts on how the application would be
structured. This is depicted in figure 4.1 which shows how the connection-
spanning nature of meteor is not influencing the strict assignation of Three.js
to the client and MongoDB to the server.

4.2.2 MongoDB

MongoDB2 is a NoSQL database and currently the only system supported
by Meteor. Its schema-less approach makes it ideal for fast prototyping and
quickly changing requirements. Also performance is good enough for updat-
ing and delivering datasets rapidly [7].

4.2.3 Three.js

Three.js3 is a JavaScript library which wraps most of WebGL’s features into
comprehensible JavaScript functions and provides useful tools for handling
complex 3D data. It covers all the necessary features for this application.
A more detailed look at the features of Three.js is given by Michel Krämer
and Ralf Gutbell in [3] where they compare performance among different
WebGL frameworks.

1https://www.meteor.com/
2https://www.mongodb.com
3http://three.js.org/

https://www.meteor.com/
https://www.mongodb.com
http://three.js.org/

4. Technical Design 21

Figure 4.2: The key process-steps of the application.

4.3 Mode of operation
The most basic mode of operation can be defined by seven steps which are
depicted in figure 4.2.

4.3.1 New user connects

Whenever a user calls the applications URL with a web browser Meteor will
establish a websocket connection which will stay connected until intention-
ally closed by the client. Through this connection all further data can not
only be exchanged easily and quickly but it also allows for pushing data
from the server to the clients. Once the connection is established Meteor
initializes the application’s primary function.

4.3.2 Download 3D model and texture

As a first step the 3D model and texture will be downloaded. This happens
very early due to the relatively big amount of data. Over 52 megabytes of
models and textures are loaded during this step and the application will
only proceed when the loading was successful.

4.3.3 Request name from user

At this point the 3D scene is loaded and ready to be rendered. The collab-
orative functions though stay disabled until the new user enters a new for
identification. Although the name is only used for displaying it the other

4. Technical Design 22

Figure 4.3: Rendering the updates of the last frame before calculating the
new updates results in a more stable frame-rate as the updates can be of
significantly different durations.

users and every client is assigned a unique alpha-numeric ID for program-
matic identification the other user’s should not be confused with an empty
entry in the user-list. Therefore, the application will wait for an input and
then go on with the next step.

4.3.4 Render 3D scene

This is where the actual render- and update-cycle will start. The first thing
which is done is actually the rendering of the scene although there is no data
present of other users at this point. This has two reasons. Firstly, rendering
the scene, then updating it with the data for the next frame delivers a
significantly more stable frame-rate. Each frame has 1/30 of a second to be
updated and rendered. The rendering takes about the same amount of time
each frame but updating the data can vary depending on the size of the data
and also on the quality of the connection. This principle is demonstrated in
figure 4.3. Secondly the render process can fail before any updates are made,
which implicitly keeps the database clear from users who cannot render the
scene due to hardware or software limitations.

4.3.5 Update user data in database

In the fifth step the user’s data will be uploaded to the database, so other
clients can access the data for their viewports to render accordingly. The
updating is frame-rate-driven and not input-event-driven to not waste per-
formance by writing more frequently than the other clients will render.

4. Technical Design 23

4.3.6 Fetch other users’ data

Fetch the other users’ data, which they will have uploaded in their step 5.

4.3.7 Update 3D scene with other user’s data

Display the updated data, create visual representations for new users and
delete visual representations when a user disconnected.

Chapter 5

Implementation

In this chapter a detailed look at the implemented features will be given.
Insights on the structure of the application and how certain problems were
solved during development will be given. Followed by the implementation of
the different awareness methods.

5.1 Initializing the 3D workspace
The dominant part of this application is of course the 3D viewport which
takes up most of the screen space. In the DOM the viewport is an html5
canvas tag which is drawn to by WebGL. Initializing this viewport is the first
thing to do whenever a user enters the application. The JavaScript code for
the handling of the 3D data is organized as function which encapsulates all
the features of this tool and is subsequently called Tool. Tool is instantiated
when Meteor has finished rendering the DOM, which can be detected via
the template’s rendered function, depicted in the lines 1 to 3, and saved into
a global variable for easy access.

1 Template.workspace.rendered = function () {
2 tool = new Tool();
3 }

When instantiated, Tool calls its own init function to setup a Three.js
scene. This initialization can be seen in the lines 4 to 36 and is the first
function call after the template is rendered in figure 5.1.

4 self.initScene = function () {
5 self.scene = new THREE.Scene();
6 self.container = document.getElementById(target);
7 var WIDTH = self.container.innerWidth;
8 var HEIGHT = self.container.innerHeight;
9

10 self.renderer = new THREE.WebGLRenderer({ antialias: true, alpha: true
});

11 self.renderer.setSize(WIDTH, HEIGHT);

24

5. Implementation 25

12
13 self.container.appendChild(self.renderer.domElement);
14
15 self.camera = new THREE.PerspectiveCamera(45, WIDTH / HEIGHT, .1, 500)

;
16 self.camera.position.set(-6.5, 5.2, 11);
17
18 self.scene.add(self.camera);
19
20 window.addEventListener('resize', self.onWindowResize, false);
21
22 self.controls = new THREE.OrbitControls(self.camera);
23
24 self.controls.target.x = .8;
25 self.controls.target.y = 3.5;
26 self.controls.enableKeys = false;
27 self.controls.update();
28
29
30 setTimeout(function () {
31 self.insertLight();
32 self.insertStaticObject();
33 }, 300);
34
35 self.onWindowResize();
36 };

Creating the scene and the renderer (lines 5–11): The first step is
to create instances for a 3D scene and a renderer. The scene does not need
any explicit configuration while the renderer needs to know the size of the
target element so it can work at an appropriate resolution. References to
both instances are saved into the variable self which is a reference to the
current instance of Tool. It is a common pattern to have the variable self
as a copy of this to avoid confusing the contexts as the this keyword may
refer to something else than the actual instance of Tool in some situations.
See [8] for more information on this and self.

Connecting the scene to the DOM (line 13): The renderer then
provides self.renderer.domElement, a html canvas element which is ap-
pended to the container element in the DOM.

Adding a camera (lines 15–18): To actually see the workspace a camera
has to be created and added to the scene. A THREE.PerspectiveCamera is
created with a viewing angle of 45°, an aspect ratio calculated from the
width and height of the container element and clipping limits of 0.1 for the
near clipping plane and 500 for the far clipping plane.

5. Implementation 26

Figure 5.1: The key functions of the application and how they are related.

Making the canvas resizable (line 20): In line 20 a listener on the
resize event provides the ability to adjust the renderer’s resolution and the
camera’s aspect ratio when necessary.

User controls (lines 22–27): For this kind of application so called orbit
controls are common. They allow to orbit around a certain point in 3D space,
zoom in and out and also to move this point by panning the view. These
kind of controls are instantiated in line 22 and bound to the camera they
should control. It is important to call the control’s update function after
the target-point’s position has been changed to apply this as the starting
position for the user.

5. Implementation 27

Creating the 3D scene (lines 30–33): Now that the scene has been
set up, a 3D object is created by calling the insertObjectByPath function.
This is the object which will be used for the evaluation. Environmental light
is added via the function insertLight, to provide a basic lighting setup.
Both of those steps are called within a setTimeout function, so the browser
does not block the execution of the script, while the 3D object is loading.

Triggering the resize event (line 35): It is a good practice to manually
call the onWindowResize function at the end of the initialization to ensure
correct dimensions for the renderer and camera.

5.2 Importing an object
The scene can hold any 3D object, created on the fly or imported from a file
any time, also during runtime. For the test environment it was decided to
have a static object loaded from a file to not bother any test-candidate with
importing or creating a 3D model. Furthermore, this made it possible to have
more ambitious textures and shaders as the parameters could be optimized
for this specific model. In the lines 37 to 60 the code for importing the file
is shown.
37 self.insertStaticObject = function () {
38 var loader = new THREE.OBJLoader();
39 var texLoader = new THREE.TextureLoader();
40
41 loader.load("/obj/rgx-a2.obj", function (data) {
42 texLoader.load('/obj/AO.jpg', function (texture) {
43 var material = new THREE.MeshPhongMaterial({
44 color: 0xeeeeee,
45 map: texture,
46 needsUpdate: true
47 });
48
49 data.children[0].material = material;
50
51 tool.scene.add(data);
52 self.objAssets.push(data);
53
54 self.animate();
55
56 $(".loading_model").fadeOut();
57 $(".choose_name").fadeIn();
58 });
59 });
60 };

Line 54 is of special interest as the self.animate function is the main
rendering function which was not called until now when the 3D model has
finished loading.

5. Implementation 28

5.3 The user
When everything is initialized on the client, the server creates a dataset
for this user in the database. This dataset, which in MongoDB is called a
document, is stored in a collection named Clients and holds the user’s data.
An exemplary dataset can be seen in in the code lines 61 to 78.
61 {
62 "_id": "QFst9av9Ni2uxqjps",
63 "pos": {
64 "x": -6.858240149101069,
65 "y": 14.28995154344419,
66 "z": 4.609732437865717
67 },
68 "rot": {
69 "x": -1.1670429774702062,
70 "y": -0.5782619403295505,
71 "z": -0.9073464993323803
72 },
73 "color": 11141290,
74 "colorString": "#aa00aa",
75 "username": "John",
76 "timestamp": 1464119115491,
77 "cursorSurfacePoint": false
78 }

While pos and rot are holding the user’s position and rotation in 3D space,
timestamp is of particular importance at this point. Because Meteor does
not provide a reliable way of knowing when a user disconnects from the
server a timestamp is saved and updated on a regular base. In this special
case it is updating once a second. Every ten seconds the server checks all
timestamps and removes users which have not sent an update for more than
five seconds, which is done in the lines 79 to 88. This way it is possible
to detect disconnected users and remove them from the scene for better
performance and less visual clutter.
79 var cleanUpUsers = function () {
80 Clients.find({
81 timestamp: {
82 $lt: ((new Date()).getTime() - 5000)
83 }
84 }).forEach(function (user) {
85 Clients.remove(user._id);
86 Colors.update({ assigned: user._id }, { $set: { assigned: false } })

;
87 });
88 }

5. Implementation 29

5.4 Toggling the awareness tools
All awareness tools are active by default. As one requirement for the testing
environment was to disable and enable them during runtime a set of buttons
was implemented which would toggle flags in the this.awareness array
which can be found in the lines 89 to 108. Those flags are considered during
each redraw to determine which features need to be drawn.
89 function Tool() {
90 this.scene = null;
91 this.camera = null;
92 this.controls = null;
93 this.objAssets = [];
94 this.objMarker = [];
95 this.frustums = [];
96 this.awareness = {
97 frustum: true,
98 name: true,
99 color: true,

100 noseRay: true,
101 headlight: true
102 }
103
104 var self = this;
105 var skipCount = 30;
106
107 ...
108 }

It is important to clear the workspace from all embodiments after any change
to those toggles, which can be seen in the lines 112, 116, 120, 124, 128 and
132, to enforce a full refresh of all awareness tools on the next redraw.
109 "click button": function (e) {
110 switch (e.target.dataset.function) {
111 case "tgl_frustum":
112 tool.awareness.frustum = !tool.awareness.frustum;
113 tool.clearEmbodiments();
114 break;
115 case "tgl_name":
116 tool.awareness.name = !tool.awareness.name;
117 tool.clearEmbodiments();
118 break;
119 case "tgl_color":
120 tool.awareness.color = !tool.awareness.color;
121 tool.clearEmbodiments();
122 break;
123 case "tgl_noseray":
124 tool.awareness.noseRay = !tool.awareness.noseRay;
125 tool.clearEmbodiments();
126 break;
127 case "tgl_headlight":
128 tool.awareness.headlight = !tool.awareness.headlight;

5. Implementation 30

129 tool.clearEmbodiments();
130 break;
131 case "tgl_3dcursor":
132 tool.awareness.cursor = !tool.awareness.cursor;
133 break;
134 }
135 $(e.target).toggleClass("active");
136 },

5.5 Awareness tools
The animate function is the primary render function and handles all the
functions for drawing the awareness tools. It uses the JavaScript function
requestAnimationFrame to recursively call itself each frame. This is also
shown in figure 5.1.

5.5.1 The animate function

In line 138 one can see the recursive call and in line 139 there is the actual
render function. Calling the render function at the beginning of animate has
significant performance advantages as the calculation of the next frame can
start immediately. On the other hand, this means that all updates lag one
frame behind but this cannot be noticed by the user. In line 141 it is checked
whether a valid instance of Tool exists and also checks the skipCount vari-
able which is used to skip the first 30 frames of calculation. Without skipping
the first 30 frames some browsers with weaker performance like Firefox or
Safari would sometimes lock up.

Updating the database (lines 144–157): For the visual embodiments
the most important thing is to have an up-to-date dataset of each user. This
is why one of the first things the animate function does is update the user’s
position and rotation in the database. At first this was triggered by the
mousemove event as soon as the user modified his view but on fast mouse
movements this event could be triggered too often for the database to handle
without noticeable lag. So it was decided to update this data in the animate
function 30 times a second.
137 self.animate = function () {
138 requestAnimationFrame(self.animate);
139 self.renderer.render(self.scene, self.camera);
140
141 if (tool && skipCount < 1) {
142 var id = Session.get("id");
143
144 Clients.update(id, {
145 $set: {
146 pos: {

5. Implementation 31

147 x: tool.camera.position.x,
148 y: tool.camera.position.y,
149 z: tool.camera.position.z
150 },
151 rot: {
152 x: tool.camera.rotation.x,
153 y: tool.camera.rotation.y,
154 z: tool.camera.rotation.z
155 }
156 }
157 });
158
159 var clientCount = 0;
160 self.clearMarker();
161
162 Clients.find().fetch().forEach(function (client) {
163 ++clientCount;
164 if (client._id != id) {
165 self.updateEmbodiments(client);
166 self.insertCursors(client);
167 }
168 });
169
170 var frustumCount = tool.frustums.length + 1;
171
172 if (clientCount < frustumCount && clientCount > 0) {
173 self.clearEmbodiments();
174 }
175
176 skipCount = 5;
177 }
178 else { --skipCount; }
179
180 self.objAssets[0].children[0].material.needsUpdate = true;
181 };

Updating the embodiments and cursors (lines 162–168): The func-
tions updateEmbodiments and insertCursors, which are called for every
other user’s data, will be explained separately later on.

Clear embodiments when necessary (lines 170–174): If there is a
mismatch between the number of clients and the number of drawn embod-
iments the scene will be cleared from all embodiments. It costs less perfor-
mance to remove all embodiments and redraw them in the next frame than
to distinguish between already drawn and missing embodiments. A missing
embodiment can result from a newly connected user whereas a disconnected
user would leave a lifeless embodiment in the scene.

Update scene object’s material (line 180): The needsUpdate prop-
erty of the scene object’s material is set to true, resulting in a recomputation

5. Implementation 32

of this material’s properties by the next call of Tool.renderer.render.

5.5.2 The updateEmbodiment function

The updateEmbodiment function, shown in the lines 182 to 194 gets called
on each frame for each user and updates that user’s visual embodiment’s
position and rotation. If there is no embodiment found for a user it inserts
one by calling self.insertEmbodiment. The client’s data is handed over
from the animate function where it has already been fetched.
182 self.updateEmbodiments = function (client) {
183 var found = false;
184 self.frustums.forEach(function (frustum, index) {
185 if (client._id == frustum.clientId) {
186 found = true;
187 tool.frustums[index].position.set(client.pos.x, client.pos.y,

client.pos.z);
188 tool.frustums[index].rotation.set(client.rot.x, client.rot.y,

client.rot.z);
189 }
190 });
191 if (!found && client.username.length > 0) {
192 self.insertEmbodiment(client._id, client.username, client.color);
193 }
194 }

5.5.3 The insertEmbodiment function

The call to insertEmbodiment in the updateEmbodiment function in line
192 creates a new embodiment, adds embodiment enhancements as children,
so they translate and rotate with the embodiment, and inserts it into the
scene. This is where most of the awareness tools are managed because they
relate to the embodiment in some way. As this function is so important, it
is explained by each line in the next paragraphs.
195 self.insertEmbodiment = function (id, name, color) {
196 if (!self.awareness.color)
197 color = false;
198
199 var geometry = new THREE.Geometry();
200 var material = new THREE.LineBasicMaterial({ color: color ? color : 0

xf8f8f8 });
201 var geometry2 = new THREE.Geometry();
202 var material2 = new THREE.LineBasicMaterial({ color: color ? color : 0

x1199ff });
203
204 var user = new THREE.Object3D();
205
206 if (self.awareness.noseRay) {
207 geometry.vertices.push(new THREE.Vector3(0, 0, -100));
208 }

5. Implementation 33

209
210 if (self.awareness.frustum) {
211 geometry.vertices.push(new THREE.Vector3(0, 0, 0));
212 geometry.vertices.push(new THREE.Vector3(-.6, .42, -1.02));
213 geometry.vertices.push(new THREE.Vector3(0, 0, 0));
214 geometry.vertices.push(new THREE.Vector3(.6, -.42, -1.02));
215 geometry.vertices.push(new THREE.Vector3(0, 0, 0));
216 geometry.vertices.push(new THREE.Vector3(-.6, -.42, -1.02));
217 geometry.vertices.push(new THREE.Vector3(0, 0, 0));
218 geometry.vertices.push(new THREE.Vector3(.6, .42, -1.02));
219 geometry.vertices.push(new THREE.Vector3(-.6, .42, -1.02));
220 geometry.vertices.push(new THREE.Vector3(-.6, -.42, -1.02));
221 geometry.vertices.push(new THREE.Vector3(.6, -.42, -1.02));
222 geometry.vertices.push(new THREE.Vector3(.6, .42, -1.02));
223 }
224 else {
225 geometry.vertices.push(new THREE.Vector3(0, 0, 0));
226 }
227
228 var line = new THREE.Line(geometry, material, THREE.LineSegments);
229
230 if (self.awareness.name) {
231 var textMaterial = new THREE.MeshLambertMaterial({ color: color ?

color : 0xffffff });
232 var text3d = new THREE.TextGeometry(name,{size:.15,height:.01,

curveSegments:4,font:"helvetiker"});
233 text3d.center();
234 var textObject = new THREE.Mesh(text3d, textMaterial);
235 textObject.position.y = -1.3;
236 user.add(textObject);
237 }
238
239 if (self.awareness.headlight) {
240 var light = new THREE.PointLight(color ? color : 0xffffff, 1, 100);
241 light.position.set(0, 0, 0);
242 user.add(light);
243 }
244
245 var loader = new THREE.OBJLoader();
246 loader.load("/obj/user.obj", function (data) {
247 user.add(line);
248 user.add(data);
249 user.clientId = id;
250 user.position.y = -9999;
251 tool.frustums.unshift(user);
252 tool.scene.add(self.frustums[0]);
253 });
254 };

The insertEmbodiment function (line 195): The insertEmbodiment
function expects three parameters. id, which is the user’s id from the database,
the user’s name name and the user’s color color.

5. Implementation 34

Determining the color (lines 196–197): Here we can see the consid-
eration of the color coding flag. If it is set to false the color variable will be
set to false to render everything from now on with the default colors.

Defining the basic assets (lines 199–204): A 3D object, mesh geome-
tries and materials are defined for later usage. The 3D object from line 204 is
used as the main object and everything else is parented to that main object.

Creating the nose ray (lines 206–208): If the nose ray flag is set a
single vertex is created at position (0,0,-100) which is straight ahead 100
units from the origin of the main object.

Creating the frustum (lines 210–226): If the frustum flag is set, the
frustum will be created by manually placing the vertices and adding them
to the geometry. If the frustum flag is not set, at least one vertex has to be
inserted at position (0,0,0) to provide an endpoint for the nose ray.

Creating a line object (line 228): In line 228 a new THREE.Line object
is generated, holding all line segments (nose ray and frustum), and saved
into the variable line.

Creating the embodiment naming (lines 230–237): The user’s name
is created as a text geometry when the appropriate flag was set. For better
readability a new material without specularity is created in line 231. The
lines 232 to 233 create the text geometry with the necessary parameters,
which is then added to a new text object in line 234.

Creating the headlight (lines 239–243): If the headlight flag was set
a new Pointlight will be created at the main objects origin. By default,
threejs uses one-sided faces so light emitted from a light-object inside a
geometry does not get blocked by that geometry. In line 242 the light object
is added to the main object.

Add id to main object (line 249): The user’s id gets added to the user
object so it can be identified further on.

Set main object’s position (line 250): The position of the embodiment
is set outside the viewable area to ensure it is not visible until the first update
with real positional data from the related user.

5. Implementation 35

Save a reference to the main object (line 251): A reference to the
main object user is added to the frustums array for easier iterating over
all embodiments later on. The name frustums is a remnant from an earlier
version where the frustum would be saved into an separate array. It would
probably be better to call it the ’users’ or ’clients’ array.

Add main object to the scene (line 252): The object is added to the
scene graph and therefore made available for the renderer to display it in
the workspace.

5.5.4 3D cursor

The 3D cursor takes a little bit of extra computation and is therefore de-
scribed separately.

The mousemove listener

The 3D cursor has to be computed from 2d data, in particular the screen-
coordinates of a user’s cursor on the html5 canvas element. To accom-
plish this, an event listener for the mousemove event of the canvas was
implemented. This function, shown in lines 255 to 277, uses the function
getSurfacePoint to calculate 3D coordinates from the X and Y coordi-
nates of the cursor. If a valid 3D coordinate is found it is saved to the
database.
255 Template.workspace.events({
256 "mousemove canvas": function (e) {
257 var cursorSurfacePoint = tool.getSurfacePoint(e.offsetX, e.offsetY);
258
259 if (cursorSurfacePoint) {
260 Clients.update(Session.get("id"), {
261 $set: {
262 cursorSurfacePoint: {
263 x: cursorSurfacePoint.x,
264 y: cursorSurfacePoint.y,
265 z: cursorSurfacePoint.z
266 }
267 }
268 });
269 }
270 else {
271 Clients.update(Session.get("id"), {
272 $set: {
273 cursorSurfacePoint: false
274 }
275 });
276 }
277 },
278 ...

5. Implementation 36

The getSurfacePoint function

The getSurfacePoint function tries to compute three-dimensional scene-
coordinates from two-dimensional screen-coordinates. First the coordinates
from the canvas element have to be converted into the right coordinate
system. Coordinates in a DOM element have their origin in the upper left
corner of an element and will increase from 0 to the width of the element
when going right and from 0 to the negative height of the element when
going down. Coordinates for a normalized 3D vector to be unprojected need
to have their origin in the center with maximums of 1 to the top, 1 to the
right, −1 to the bottom and −1 to the left. A vector with the converted
coordinates is set in line 284. As there is no Z coordinate coming from the
input because of its two-dimensional characteristics the Z portion of the
vector will be set to 0 for now.
279 self.getSurfacePoint = function (inputX, inputY) {
280 var vector = new THREE.Vector3();
281 var raycaster = new THREE.Raycaster();
282 var dir = new THREE.Vector3();
283
284 vector.set((inputX / self.renderer.domElement.clientWidth) * 2 - 1,
285 -(inputY / self.renderer.domElement.clientHeight) * 2 + 1, 0);
286 vector.unproject(self.camera);
287 raycaster.set(self.camera.position, vector.sub(self.camera.position).

normalize());
288
289 if (self.objAssets.length > 0) {
290 var intersects = raycaster.intersectObjects(self.objAssets, true);
291
292 if (intersects != false) {
293 return intersects[0].point;
294 }
295 else
296 return false;
297 }
298 };

The vector will then be unprojected by the parameters of the camera,
which basically is the inversion of the projection, i.e., the process of project-
ing the three-dimensional scene on a two-dimensional plane to display on a
screen. In the lines 287 to 297 the THREE.Raycaster module is then used
to determine if there is any surface in the way of this ray. If any surface is
found the point where that surface is hit by the ray is the three-dimensional
point of where the cursor is pointing on the canvas element. If no surface is
found, in the way of the ray, the function returns false.

Rendering other users’ 3D cursors

Rendering the cursors of other users can now easily be done in the animate
function by clearing all markers in line 160 and redrawing them at their

5. Implementation 37

respective new positions in line 166. The reason why markers are cleared and
generated every frame, in contrast to the embodiments is that the markers
are made of simple spheres. It is faster to recreate such a sphere at a new
position than to move the old one according to its new position or remove it
when the associated user’s cursor is not pointing at a surface in that moment.
For the embodiments a full recreation each frame is not faster because the
models are loaded from an obj file.

Chapter 6

Evaluation

This chapter is about the evaluation of the proposed awareness methods and
consists of three parts. Section 6.1 describes the methodology, which was
used to aggregate the data. Section 6.2 presents this data and section 6.3
analysis it and draws some conclusion on the results.

6.1 Methodology
The tests involved nine participants who would each complete four steps.

6.1.1 Step 1

In the first step the participants were introduced into the test environment.
As the features to test involved a collaborative component multiple partici-
pants took part simultaneously. They were told to make themselves familiar
with the environment and the implemented awareness methods.

6.1.2 Step 2

In the second step the users where confronted with ten different situations,
each with a question which required the utilization of one or multiple aware-
ness methods. Additionally, the users should state how confident they are
about their answers. The following situations and questions were used for
step 2.

Question 1

The task in question 1 is to find the names of the users in the session and
where they are. There were five options with varying names and locations
for each user. The situation and question with possible answers are depicted
in figure 6.1. The active awareness tools are color coding, the nose ray and
the headlight. The last answer was the correct one which can be seen by

38

6. Evaluation 39

Figure 6.1: Screenshot of situation 1 with question.

Figure 6.2: Screenshot of situation 2 with question.

the nose rays in the colors of Judith and John. As there is no nose ray for
James, the user himself must be James.

Question 2

Question 2 needs the participant to spot a sign of activity in the scene. In
this case it was the color coded 3D cursor, depicted in figure 6.2. Three

6. Evaluation 40

Figure 6.3: Screenshot of situation 3 with question.

possible answers were given with number 3 being correct.

Question 3

The third situation, shown in figure 6.3 shows a single embodiment which
should be identified. The headlight and color coding are active, so the only
possibility is to identify the user by those two awareness methods. As there
are three users in the session there are three options available. The correct
answer is the first one, John.

Question 4

Question 4 asks for the name of the user on the left side of the model. Frus-
tums, color coding and headlights are enabled. The correct answer for this
question which is depicted in figure 6.4 is, again, John. Clearly recognizable
by the color of the frustum.

Question 5

To answer the 5th question the participant needs to find the number of
users in this session. This can be achieved by counting the nose rays or
counting the entries in the user-list. Counting the nose rays in this case
can be confusing as color coding is disabled. Question 5 and the according
scenario are shown in figure 6.5.

6. Evaluation 41

Figure 6.4: Screenshot of situation 4 with question.

Figure 6.5: Screenshot of situation 5 with question.

Questions 6–10

The task in question 6, 7, 8, 9 and 10 is to fill in the names of four users
in four text-fields. In all situations the positions of the users and the en-
abled awareness methods are different. For the scene in question 6 only the
naming is enabled (see figure 6.6). Scenario 7, depicted in figure 6.8, shows
the users with enabled frustums and color coding while for scenario 8 the
headlights and the color coding were enabled which is shown in figure 6.8.

6. Evaluation 42

Figure 6.6: Screenshot of situation 6 with question.

situation 9 and 10 both have the nose rays active, combined with names in
situation 9, depicted in figure 6.9, and color coding in situation 10, depicted
in figure 6.10.

6.1.3 Step 3

In the third step of the test the participants could freely use the test-
environment again and, while doing so, were asked to write a few sentences
about their impression of the awareness methods. Following four questions
were asked and could be answered without limitation in length of the an-
swers:

1. Did you feel you were aware of the other users’ position, perspective
and identity?

2. Did any of the implemented awareness tools cause particularly positive
impressions?

3. Did any of the implemented awareness tools cause particularly negative
impressions?

4. Is there anything you would do differently to represent a user’s posi-
tion, perspective or identity?

6.1.4 Step 4

In step 4 the participants were asked for their profession, age and whether
they had any experience with 3D software or collaborative software to see if
there are any correlations between experience and how well the awareness

6. Evaluation 43

Figure 6.7: Screenshot of situation 7 with question.

Figure 6.8: Screenshot of situation 8 with question.

methods were received. After the fourth step the accumulated data was
saved into a JSON file for evaluation later on.

6.2 Aggregated test data
The raw data of all 9 participants is listed here for reference or further
analysis. As the first step just served as a way to get familiar with the tools

6. Evaluation 44

Figure 6.9: Screenshot of situation 9 with question.

Figure 6.10: Screenshot of situation 10 with question.

there was no data to be gathered.

6.2.1 Step 2

Table 6.1 shows the outcome of step 2. The first row P1 to P9 represents
the participants, the first column Q1 to Q10 the questions as they were
described earlier. The other cells contain the answers of the participants. A
Xindicates a correct answer and x indicates an incorrect answer. The digits

6. Evaluation 45

Table 6.1: The results of step 2 in tabular form. rows are questions, columns
are participants. The correctness of the answers are expressed by a Xfor a
correct answer or a x for an incorrect answer. The digits are indicating how
sure the user was about his answer.

P1 P2 P3 P4 P5 P6 P7 P8 P9
Q1 X(4) X(3) X(3) x (4) x (4) x (3) x (3) x (3) x (3)
Q2 X(4) x (3) X(4) X(2) x (3) X(3) X(1) X(2) x (2)
Q3 X(3) X(2) x (3) x(2) x (3) x (2) X(1) X(3) X(3)
Q4 X(4) X(4) X(4) X(4) X(4) X(4) X(3) X(3) X(4)
Q5 X(4) X(4) X(4) X(3) X(4) X(4) X(3) X(3) X(4)
Q6 x (2) X(3) x (2) x (2) x (3) x (1) x (2) x (1) x (2)
Q7 X(4) X(4) X(4) X(4) X(4) X(4) X(4) X(4) X(4)
Q8 X(2) x (1) X(2) x (3) x (1) x (4) x (3) x (2) x (2)
Q9 x (1) X(3) X(2) x (1) x (2) x (3) x (3) x (1) X(1)
Q10 X(4) X(4) X(4) X(4) X(4) X(4) X(4) X(3) X(4)

Table 6.2: Answers to the first question of the evaluation’s step 3.

Question Did you feel you were aware of the other users’ position,
perspective and identity?

Participant 1 Most times yes, some tools were more helpful than others
Participant 2 I guess - especially the nose rays and colors where important
Participant 3 Yes
Participant 4 Yes
Participant 5 Yes, in case of colored beams.
Participant 6 Yessssss
Participant 7 Yes
Participant 8 Yes, really cool :)
Participant 9 Yes

are indicating how sure the user was about his answer and range from 1, the
lowest possible level, to 4, the highest possible level.

6.2.2 Step 3

The results of step 3 are shown in table 6.2 for the first question, table 6.3
for the second question, table 6.4 for the third question and table 6.5 for the
last question.

6.2.3 Step 4

The professions of the participants were relatively wide spread from an CEO
and developers on the one hand to designers and a designated 3D artist on
the other hand. The average age of the participants was 29 years and while

6. Evaluation 46

Table 6.3: Answers to the second question of the evaluation’s step 3.

Question Did any of the implemented awareness tools cause particularly
positive impressions?

Participant 1 coloring works extremely well and at first sight
Participant 2 The names, frustums, colors and nose rays where quite

important. They made it clear which user has been on which
site of the 3D map

Participant 3 no answer given
Participant 4 Runs smoothly
Participant 5 Coloring of the beams und perspektive visional “view-cone”

help to find out the other users position and actions.
Participant 6 no answer given
Participant 7 colors and nose ray help to identifiy the user
Participant 8 The colors and noseray were very helpful because they were

always visible in contrast to the name which is often hidden
in some way.

Participant 9 names, frustums and colors were very good

Table 6.4: Answers to the third question of the evaluation’s step 3.

Question Did any of the implemented awareness tools cause particularly
negative impressions?

Participant 1 headlight was interesting but useless with more than 2-3 users
Participant 2 the headlights where handy, but if there had been more than

3 users it was quite hard for me to identify them with single
users when colors headlights are combined.

Participant 3 not really
Participant 4 No
Participant 5 colorless and nameless characters did not allow to identifiy

users and their actions.
Participant 6 No
Participant 7 i wasn’t sure about the 3D cursors
Participant 8 I think the headlight will be useless with a lot of members in

the scene. It will confuse everyone because it won’t be really
recognizeable.

Participant 9 3D cursor and headlights

five of nine had experience with 3D software also five of nine had experience
with collaborative software.

6.3 Analysis
Judging from the feedback of step 2 and step 3 of the evaluation there are
two awareness methods which were perceived extraordinarily positive. The

6. Evaluation 47

Table 6.5: Answers to the fourth question of the evaluation’s step 3.

Question Is there anything you would do differently to represent a user’s
position, perspective or identity?

Participant 1 no
Participant 2 no answer given
Participant 3 no answer given
Participant 4 No
Participant 5 no, the view-cone and colored action beams tell utmost all.

In details the character names are sometimes very small and
in the wrong direction (i.e. name reading from right to left).

Participant 6 Different colors
Participant 7 No
Participant 8 No
Participant 9 No

color coding and the nose ray. Not only where they mentioned by multiple
participants in a positive way in step 3 but also in step 2 the amount of
correct answers was higher when these two methods were enabled. For ex-
ample, in question 10, where 100% of participants gave the correct answer,
with only the color coding and nose rays enabled.

Headlight On the other hand there is the headlight which was considered
not very helpful, especially when more than two users were present and made
it into four of nine participant’s answers regarding particularly negative
impressions. Though the feedback was quite critical about the headlight it
seemed to work out fine with enabled color coding and not more than two
other users in the session as it is indicated by the answers to question 3
of step 2. In question 3 the participants were asked to identify the user on
the left with only the headlight and color coding being enabled. 100% of
participants gave the correct answer. For future research one could look into
enabling the headlight based on the distance between users or users and
assets as it definitely proved to be of value under certain circumstances.

Frustums The frustums were mentioned four times in a positive way, two
users described them as very important. Regarding the results of step 2 the
questions involving a frustum were answered correctly 33 of 36 times.

Color coding As already suggested in the chapter 4 the color coding is
a special case of awareness tool as it does not work without anything else
being enabled. As some participants of the tests mentioned in their com-
ments this is also a valid point the other way around where some awareness
methods are less useful, unusable or even distracting without color coding.
This is especially true for the headlight but also for the nose rays. One of the

6. Evaluation 48

participants would have preferred different colors though it is not stated if
this was due to the colors being too similar and therefore hard to distinguish
or just for visual reasons.

Names Names have been a more controversial topic among the partici-
pants. While some described names as a vital tool for identification, others
saw problems in the fact that the text often was not readable because it
was heading into a different direction, was too far away or hidden behind
the embodiment it should have identified. The answers to the questions in
step 2 support the more critical view on names as only 37% of the answers
given to questions which involve naming were correct. Retrospectively the
positioning of the names worked very well as no participant seemed to have
problems with matching the name to the appropriate embodiment but the
rotation of the name could be improved by heading it towards the user’s
viewpoint. Of course this can not be done in a naive way as constraints have
to be considered where the text would intersect with the embodiment.

3D cursor The cursor found less attention in the answers of step 3. One
participant stated that he was not sure about the 3D cursor another one just
listed it in his answer for the question about particularly negative impres-
sions and a third participant described it as “handy” but also mentioned
that the headlight would likely be useless with more than three users. In
step 2 there was only one question involving the 3D cursor. It was answered
correctly by six of the nine participants. The 3D cursor is probably the
awareness method with the most possibilities to improve. One idea was to
make the size of the cursor dependent on its speed so that a fast movement
would increase the cursor’s size and a slow movement would decrease it.
That way an observer would not lose track of fast cursors but a user would
still be able to point out small details when the cursor get’s smaller again.

Experience Surprisingly having experience with 3D software or collabo-
rative applications does not seem to have much of an influence on the results
of step 2. The most and the fewest correct answers were given by partici-
pants with both, experience in 3D software and experience in collaborative
software. The two participants without experience in either of those two
fields achieved five and six correct answers which is only slightly beneath
the average of 6.2 correct answers.

Confidence The participants were a lot more confident when answering
questions correctly than they were when giving an incorrect answer. On the
scale of 1 “very unsure” to 4 “very sure” the participants stated an average
confidence level of 3.375 for correct answers and 2.352 for incorrect answers
which suggests that although the participants were not able to answer some

6. Evaluation 49

questions correctly they were quite aware of which questions they could
answer correctly and which not.

General awareness In the first question of step 3 the participants were
asked whether they felt aware of the other users’ position, perspective and
identity. Six of nine participants answered with a clear yes, the remaining
three stated that depending on the enabled tools they felt aware of the other
users.

Observations During the tests the participants engaged quickly with the
awareness methods. Although some participants were skeptical at first, es-
pecially those without any prior experience, they understood and used the
awareness tools quickly and managed to find their way around the 3D scene
and the other users inside it.

Chapter 7

Conclusion

Concluding it can be said for sure that collaborative workspace awareness is
a very complex topic with still many open questions to be answered. A single
research like this can only slightly touch that topic. Neither the less some
interesting results were won in the course of this thesis. With the help of
the user-tests it was possible to evaluate the effectiveness of some methods
for workspace awareness and spot strengths and weaknesses. Some of the
results were foreseeable like the color coding which was considered vital by
a majority of testers. Some other results however were quite surprising for
me as I expected the nose ray to be less successful. There is no doubt that
this field can still provide content for a lot of research. Just testing through
all suggested awareness methods in the available literature and drawing a
conclusion from those tests could keep teams of researchers busy. For me
the process of working on this thesis and the related project turned out to
be quite different from what I was expecting. When I started I thought de-
veloping a collaborative 3D workspace would take a lot of effort and although
I was aware that the tests would be work-intensive I did not expect the actual
implementation to be so much easier than to find appropriate test scenarios.
I am sure anyone who decides to dive into the topic of workspace awareness
in collaborative applications will find reading this thesis at least interesting.
Especially as most other research in this field is quite old and most of those
papers do not make their test data publicly available.

7.1 Outlook
Although it may take years to see any research in this field in a widely
used product I am confident that the field of collaborative 3D software is a
growing one. There are constantly tools being developed for this purpose,
some of them more successful than others. And even though the focus of this
thesis lied on the tools for collaborative workspace awareness another inter-
esting aspect is how relatively easy it was to implement a well working and

50

7. Conclusion 51

reliable collaborative 3D workspace. If it is not for the awareness methods
themselves maybe the concepts behind the implementation can help others
to refine their own implementations and make improvements to the idea of
collaboration in 3D space. Especially the combination of Three.js and me-
teor went surprisingly smoothly considering that these two relatively young
technologies have not been used a lot together in the past. I could imagine
to see meteor and Three.js being used together more often as developers
start to discover the possibilities. Especially because no major problems oc-
curred during development a reorientation towards web-applications could
actually make 3D workspaces in browsers a real alternative not only for col-
laborative software. Web-applications and native 3D graphics are definitely
coming together more and more.

Appendix A

Content of the
CD-ROM/DVD

Form: CD-ROM, Single Layer, ISO9660-Format

A.1 PDF-Files
Pfad: /

_DaBa.pdf Thesis

A.2 Online Literature
Pfad: /literature-online

*.pdf Copies of online literature

A.3 Other
Pfad: /images

*.eps Vector graphics
*.jpg, *.png Raster graphics

52

/
_DaBa.pdf
/literature-online
*.pdf
/images
*.eps
*.jpg, *.png

References

Literature

[1] Agustina and Chengzheng Sun. “Televiewpointer: An Integrated
Workspace Awareness Widget for Real-time Collaborative 3D Design
Systems”. In: Proceedings of the 16th ACM International Conference
on Supporting Group Work. GROUP’10. Sanibel Island, Florida, USA:
ACM, 2010, pp. 21–30 (cit. on p. 9).

[2] Jeff Dyck and Carl Gutwin. Awareness In Collaborative 3D
Workspaces. Tech. rep. Department of Computer Science, University
of Saskatchewan, 2002. url: http://hci .usask.ca/publications/2002/
groupspace.pdf (cit. on pp. 5, 6, 12, 17).

[3] Michel Krämer and Ralf Gutbell. “A Case Study on 3D Geospatial Ap-
plications in the Web Using State-of-the-art WebGL Frameworks”. In:
Proceedings of the 20th International Conference on 3D Web Technol-
ogy. Web3D’15. Heraklion, Crete, Greece: ACM, 2015, pp. 189–197 (cit.
on p. 20).

[4] M. Stefik et al. “WYSIWIS Revised: Early Experiences with Mul-
tiuser Interfaces”. ACM Transactions on Information Systems 5.2 (Apr.
1987), pp. 147–167 (cit. on p. 4).

Online sources

[5] Google Docs. url: https://docs.google.com/ (visited on 06/15/2016)
(cit. on p. 9).

[6] Meteor’s client and server architecture. url: https : / / www .
discovermeteor . com/blog/what - goes - where/ (visited on 06/15/2016)
(cit. on p. 20).

[7] Performance Testing MongoDB 3.0. url: https : / / www . mongodb .
com/blog/post/performance- testing-mongodb-30-part- 1- throughput-
improvements-measured-ycsb (visited on 06/15/2016) (cit. on p. 20).

53

http://hci.usask.ca/publications/2002/groupspace.pdf
http://hci.usask.ca/publications/2002/groupspace.pdf
https://docs.google.com/
https://www.discovermeteor.com/blog/what-goes-where/
https://www.discovermeteor.com/blog/what-goes-where/
https://www.mongodb.com/blog/post/performance-testing-mongodb-30-part-1-throughput-improvements-measured-ycsb
https://www.mongodb.com/blog/post/performance-testing-mongodb-30-part-1-throughput-improvements-measured-ycsb
https://www.mongodb.com/blog/post/performance-testing-mongodb-30-part-1-throughput-improvements-measured-ycsb

References 54

[8] Utilizing a self variable in JavaScript. url: http://www.javascriptkata.
com/2007/05/14/how-to-use-the-self-with-object-oriented- javascript-
and-closures/ (visited on 06/15/2016) (cit. on p. 25).

http://www.javascriptkata.com/2007/05/14/how-to-use-the-self-with-object-oriented-javascript-and-closures/
http://www.javascriptkata.com/2007/05/14/how-to-use-the-self-with-object-oriented-javascript-and-closures/
http://www.javascriptkata.com/2007/05/14/how-to-use-the-self-with-object-oriented-javascript-and-closures/

Messbox zur Druckkontrolle

— Druckgröße kontrollieren! —

Breite = 100 mm
Höhe = 50 mm

— Diese Seite nach dem Druck entfernen! —

55

	Declaration
	Abstract
	Kurzfassung
	Introduction
	State of the Art
	3D graphics
	Browser-based applications
	Browser-based 3D technology
	Collaborative workspaces
	Strict WYSIWIS
	Relaxed WYSIWIS

	Workspace awareness in 3D environments
	Methods
	Alternate views
	Real-life implementations

	Workspace awareness in non-3D environments
	Related work

	Own Approach
	Environment
	A browser-based approach
	Requirements

	Methods
	Visual embodiments
	Embodiment enhancements

	Technical Design
	Evolution of features
	Technologies
	Meteor
	MongoDB
	Three.js

	Mode of operation
	New user connects
	Download 3D model and texture
	Request name from user
	Render 3D scene
	Update user data in database
	Fetch other users' data
	Update 3D scene with other user's data

	Implementation
	Initializing the 3D workspace
	Importing an object
	The user
	Toggling the awareness tools
	Awareness tools
	The animate function
	The updateEmbodiment function
	The insertEmbodiment function
	3D cursor

	Evaluation
	Methodology
	Step 1
	Step 2
	Step 3
	Step 4

	Aggregated test data
	Step 2
	Step 3
	Step 4

	Analysis

	Conclusion
	Outlook

	Content of the CD-ROM/DVD
	PDF-Files
	Online Literature
	Other

	References
	Literature
	Online sources

