
In-Game Market Systems and Their
Agents

Melanie Freilinger

M A S T E R A R B E I T

eingereicht am
Fachhochschul-Masterstudiengang

Interactive Media

in Hagenberg

im September 2014

© Copyright 2014 Melanie Freilinger

This work is published under the conditions of the Creative Commons
License Attribution–NonCommercial–NoDerivatives (CC BY-NC-ND)—see
http://creativecommons.org/licenses/by-nc-nd/3.0/.

ii

http://creativecommons.org/licenses/by-nc-nd/3.0/

Declaration

I hereby declare and confirm that this thesis is entirely the result of my
own original work. Where other sources of information have been used, they
have been indicated as such and properly acknowledged. I further declare
that this or similar work has not been submitted for credit elsewhere.

Hagenberg, September 29, 2014

Melanie Freilinger

iii

Contents

Declaration iii

Kurzfassung vii

Abstract viii

1 Introduction 1
1.1 Goal of the Thesis . 1
1.2 The Beginnings . 1
1.3 Virtual Economy . 2
1.4 The Price of Time . 3
1.5 Mixing Real and Virtual Money 3
1.6 Games using In-Game Markets 4

1.6.1 MMO-RPGS . 4
1.6.2 Example of Failure . 5

1.7 Broken Models and Virtual Worlds 6
1.8 Conclusion . 6

2 Related Work 7
2.1 Computational Intelligence 7

2.1.1 CI in Game Simulations 7
2.1.2 CI in Simulated Markets 8

2.2 TAC . 8
2.3 Intelligent Agents in Finance 8

3 Economic Basics 10
3.1 Overview . 10
3.2 Term: Economy . 10
3.3 Real World Stock Market . 10

3.3.1 Orderbook . 11
3.3.2 Influences on Stock Market 11

3.4 Conclusion . 12

4 Dynamic Ingame Market System 14

iv

Contents v

4.1 Overview . 14
4.2 Secondary Market Place . 14
4.3 More controlled Markets . 15
4.4 Stability in In-Game Markets 15

4.4.1 Cashflow . 15
4.4.2 Creation of a Game Economy 16
4.4.3 Methods to prevent Inflation 16
4.4.4 Bi-Transactional Markets 17

4.5 Conclusion . 18

5 Simulating Virtual Markets 19
5.1 Overview . 19
5.2 A Game Theoretic Simulated Market 19
5.3 Natural Computing . 20

5.3.1 Evolutionary Computation 20
5.3.2 Genetic Programming 21
5.3.3 Fuzzy Logic . 23

5.4 Conclusion . 26

6 Intelligent Agents 27
6.1 Overview . 27
6.2 Intelligent Agents . 27

6.2.1 AI Agents and Environments 29
6.2.2 Agent Behaviour . 29
6.2.3 Trading . 29

6.3 Conclusion . 31

7 Implementation 32
7.1 Overview . 32
7.2 Strategy Development . 32
7.3 In-Game Market System . 33

7.3.1 The Market’s Ecosystem 33
7.3.2 The Market Interface 35

7.4 The Design of the Agents . 36
7.4.1 Assessment of Demand 37
7.4.2 Assessment of Price 38
7.4.3 Conclusion of Agent Solution 38

7.5 Other Methods . 38
7.5.1 Fuzzy Approach . 38

7.6 Tools and Frameworks . 40
7.6.1 Mongo DB . 40
7.6.2 JavaFx . 41
7.6.3 jFuzzyLogic . 43

7.7 Conclusion . 44

Contents vi

8 Evaluation 46
8.1 Overview . 46
8.2 How to Test Artificial Agent Systems 46
8.3 Setting the Basic Parameters 47
8.4 Define Testing Situations . 48
8.5 Results . 49

8.5.1 Test-Run 1 . 49
8.5.2 Test-Run 2 . 50
8.5.3 Test-Run 3 . 52

8.6 Conclusion . 52

9 Conclusion 54
9.1 Development Potential . 54

References 56
Literature . 56
Online sources . 58

Kurzfassung

Diese Masterarbeit beschäftigt sich mit dem Thema In-Game Marktsysteme.
In den letzten Jahren, kamen immer mehr Spiele auf den Markt, welche
In-Game Marktsysteme benutzen. Es gibt viele verschiedene Arten von Sys-
temen welche in diesen Spielen verwendet werden, was abhängig von dem
Spielgenre ist. Im ersten Teil der Arbeit werden diese verschiedenen Sys-
teme genauer beleuchtet und Beispiele gezeigt in welchen Spielen sie zu
finden sind. Weiters wichtig sind ebenfalls die Hintergründe für eine Imple-
mentierung eines In-Game Markts in ein Spiel und Strategien, wie dessen
Stabilität gehalten und gewährleistet werden kann. Der erste Abschnitt ver-
mittelt, wieso es heutzutage ein wichtiges Thema in der Spielentwicklung
ist. Die Arbeit blickt auch kurz auf Ökonomische Grundlagen, um das Wis-
sen für wirschaftliche Systeme aufzubessern, da diese gebraucht werden um
die Funktionsweisen verstehen zu können. Weil die Marktsysteme in Spie-
len denen in der realen Welt sehr ähnlich sind und gleiche Funktionsweisen
und Verhalten aufweisen, kann die übliche Wirtschaftstheorie angewendet
werden. In der Implementierung, zugehörig zu dieser Arbeit, geht es im
wesentlichen um die Simulation eines virtuellen Markts, in dessen Hinter-
grund intelligente Agents stehen, die Spieler simulieren und die Wirtschaft
im Spiel dynamisch halten sollen. Dazu werden auch essentielle Grundlagen
für das Design von intelligenten Agents präsentiert. Im Implementierung-
steil wird näher auf die reale Ausarbeitung eingegangen und das vorher
gesammelte Wissen, praktisch angewendet. Das dabei entstandene Tool ist
für jedes Spiel verwendbar und besteht aus zwei Teilen: dem Userinterface
des Marktes, welches die Spieler verwenden können um mit dem Markt zu
interagieren, und den Agents im Hintergrund. Am Ende der Arbeit wird
das Tool getestet und evaluiert, ob das Verhalten des Marktes und das der
Agents dem entspricht, was erwartet wird und wie diese Ergebnisse eventuell
angepasst und verbessert werden können.

vii

Abstract

This thesis deals with the topic of in-game market systems. In the last decade
more and more games came up with the idea to include market systems into
their games. The range of markets are big and the forms of it can differ
from one game to another. The form of the market depends on the game
itself. In the first section some of the diverse systems are figured out and in
which games they can be found. Also some backgrounds why markets are
introduced into games and how to hold the stability of it, are presented. Af-
ter getting some impressions why this topic is an important part of today’s
games, the thesis gives some basic knowledge about economical basics which
are somehow needed to understand how these market works. Because the
real world market and game markets have very much in common, traditional
economic theory can be used. One of the main issues of the implementation
part, is to simulate a virtual market for a specific game. And because this
market can not work with only few participants, the design of agents with
economic behaviour is also covered in this thesis. At the end of the the-
sis, the gathered knowledge about economics, simulated virtual market and
intelligent agents is summed up to create a small in-game market system
which can be implemented into every game. The tool is split into two parts:
the user-interface part, which is planned for the human players and in the
background there are working simple agents using theories described earlier
in the thesis. At the close of the thesis, these agents are evaluated and tested,
if the planned behaviour acts like expected and what can be done to adjust
and improve these working routines.

viii

Chapter 1

Introduction

1.1 Goal of the Thesis
Gaming is getting more and more important in our daily lives. Every year
there are thousands of participants at conferences like the Gamescom at
Cologne1. Games are going social, target groups are spreading and the games
industry is an multimillion dollar business. Because of these big markets,
topics around games are increasingly relevant.
An interesting topic in game development, is the production of an in-game
market system and economy. It became very popular to integrate these into
games. Furthermore the ideas of creating virtual markets is an much treated
topic, not only in games. There is great interest in finance in the simulation
of markets, for example for research issues. Financial theorists discovered,
that the virtual environment has perfect conditions to research new ideas
of economic theory. The ideas used in traditional simulation of markets can
be used in games as well. Because of these facts, the topic of the integration
of such systems is worth to take a deeper look. In this thesis the topic pool
of virtual markets and simulating these, is elaborated. The theoretical part
is supported with a real implementation of an virtual market system for
a game, which uses some of the presented ideas including financial theory,
artificial intelligence and knowledge about virtual market simulations.

1.2 The Beginnings
Asheron’s Call, Ultima Online and Everquest were one of the first games
which involved virtual economy. In Asheron’s Call it was very risky and
cumbersome to posses in-game money. It had no market system and players
were not able to trade secure because there was no feature for this. Addi-
tionally the most valuable item in the game were ubiquitous. Furthermore
there was little motivation to gather much money. There was no crafting

1http://www.gamescom.de/de/gamescom/presse/presseinformationen

1

1. Introduction 2

system, the loot were most of the times only trash, and when players found
a good item, the did not want to trade it for money, so for what else? Every-
one wanted and needed the ubiquitous shards and moulds, because for every
good weapon and armour these items were indispensable. Because of that
fact, it developed a barter system and players listed on forums what they
wanted to trade. The ’currency’ was the shards and moulds. So even despite
the lack of trading tools like today common auction houses or bazaars, there
was much trading in the game [13].

1.3 Virtual Economy
Because of the growing popularity of in-game markets and economies, game
developers often hire economic experts for these issues so that they can
ensure that the economy remains stable and efficient, what then helps the
player to enjoy and like the game. The average player spends around 22 hours
per week in-game and spends about 200$ per year in monthly subscriptions,
so the players call for a stable game with all its features [24]. Today virtual
economies are found in many different games. The larger virtual economies
are often found in MMORPGs. But also inherent in life simulation games,
browser games and mobile games. In the popular life simulation “Second
Life” the virtual economy is tightly bound to the real world. Players can
create in-game assets and sell them to the other players of the game and
also earn real world money. The following characteristics may be found at
virtual goods in games. The characteristics are very flexible and rely on the
specific game design [7].

• Rivalry The resource is limited to one person or a small amount of
players.

• Persistence The resource is persistent across the users sessions. They
are even sometimes visible when the user is logged out.

• Interconnectivity The resource effects and is effected by other play-
ers in the game world. The value of the resource depends on the persons
ability to use it.

• Secondary markets Virtual resources are created and traded some-
times also for real world money.

• Value added by user The user is able to enhance the value of a
resource by customizing it.

As the conditions are similar to the real world, economic theory can be
used to study these virtual worlds. In-game items are often priced according
to supply and demand of the in-game economy. The virtual economies are
a common core feature in the games. What the real world economy and the
virtual ones distinguishes, are following facts:

1. Introduction 3

• every player has the same intrinsic capability to get into the economic
activities, like harvesting, crafting and trading,

• crafting activities are often not bound to a fixed place and can be done
anywhere in the world or at explicit crafting stations, at any time,

• all products are homogeneous, means that every heal potion is always
the same and has no quality issue, no matter who is crafting it,

• the production costs are always the same, not matter how many items
the player makes.

The key issue is how a game designs the market around the concept
of Perfect Information. Perfect Information labels the theoretical idea that
all producers and customers know price and quality of goods. In games that
would be the information shown to the players. In many games that happens
by hovering over an item and players are able to get all relevant information.
Players can have all important information to make a decision [13]. With the
ability of having all the necessary information about data and the ability to
track individual actions, virtual economies can be a new way for economists
and social experts to research real world problems of inequality, poverty and
unemployment at a model like a game [24].

1.4 The Price of Time
Players not necessarily do want to maximize their profit (depends on the
game design), rather than playing to have fun. Some players will rather
chose the more funny way of receiving items. But also sometimes the more
quick way is chosen, which is often to simply buy the item than farming
itself. It creates the twist between time and playing for fun. Fundamentally
the value of an item, its costs to obtain it, means the time which the player
have to invest. Players often extrapolate, in order to find out which actions
will show results earlier. This behaviour leads to rough irregularities. If many
players enjoy farming more than buying them, the market can get depressed
if there are to less players to buy these superfluous items. So deflation does
not come from an overcrowding in supply of the resources rather from too
many suppliers [13].

1.5 Mixing Real and Virtual Money
Today in many games it is very common to create a mixture of using real
and virtual currency. The items and goods are typically changed for in-game
currency and often these currencies are also related to real world currency.
This system is often used in free mobile and Facebook games like Farmville,
Candy Crush Saga, etc. where this is called In-App Purchases. Also in other
games it is common to use a in-game currency related to real money. In

1. Introduction 4

League of Legends the players have a currency which is directly bound to
real money. With these points users can buy skins for their heroes, which
only have a character of make-up. There are also many MMOs, mainly ones
without monthly subscriptions, which have in-game currency paid with real
money.

1.6 Games using In-Game Markets

1.6.1 MMO-RPGS

Eve Online

The popular MMO Eve-Online is known for its stable and complex econ-
omy. In Eve-Online you even loss more money when not attending in money
gathering activities. The two main activities in the game are gathering ISK,
which is the currency, and PVP. When participating on PVP the players can
win great loot and invest it. Players can trade raw materials, participate in
complex markets and create powerful trade alliances and financial institu-
tions like banks [24]. For the game the developer even has its own economy
specialists to help to keep the game balanced, one of them is Eyjolfur Gud-
mundsson [23]. The first economical breakdown in the game was caused by
a group of players which manipulated the game’s economy to their favour.
Eyjolfur told the Wall Street Journal that: “there is nothing virtual about
this world”.

Guild Wars 2

Guild Wars 2 has a combined system using in-game and real world currency.
Diamonds can be bought with real money and spent in the in-game market.
Players can either spent the diamonds on items like skins for their armour
and weapons, or gimmicks like pets, but none of these items bring an ad-
vantage for the game itself, they only have cosmetic character. Furthermore
the player is able to convert the diamonds into in-game gold which can be
used by the game character to buy all the other items available in the game.
The rate of exchange between diamonds and gold can change over time and
does not stay the same, depending on supply and demand of diamonds. The
more people are buying diamonds the less value the have and otherwise. So
clever players will use these informations to decide when it is the best point
to buy or change diamonds.

X-Rebirth

In the online space game X-Rebirth there is also a big economy. They have
agents which are do trading as real players do. In this system the prices are
dependent on the simulated economy that means the developers designed the

1. Introduction 5

games’ market like a realistic economy. There would also be the possibility
to design it player friendly, like consider the players wishes and needs. But
they decided not to choose the top-down way although this could be more
satisfying for short periods. For balancing the economy and to have an idea
how to design the market system, they use a time accelerated mode to
simulate many weeks of game play in a couple of hours. With that it is
possible to see effects of influences on the market also for the future sight.
Effects can for example occur on prices and also on storage levels. With these
parameters it is possible to define and evaluate if the economy is robust or
weak. Small bugs in the artificial intelligence (AI) can cause big damage onto
the economy even destroy it. So in this testing phases developers can spot
possible bugs or errors in the economy or in other aspects of the game which
have influences. For balancing the in-game economy it is necessary to observe
it. Means that the behaviour of it has to be analysed and compared to a list of
wishes how it should behave. With this data then behaviours can be tweaked.
A furthermore important aspect, is to design the economy interesting for
players. They should see a good combination of perfectly working or partly
damaged economy, like in real life. It would be very boring and players
will not use the market system any more, if everything is straight ahead
and every time perfectly balanced. So also factories can be destroyed so the
delivery of many resources is stopped, but these resources are important for
the market system. So every game design decision will have an impact onto
the economy and can harm or improve it [11].

1.6.2 Example of Failure

The example of Diablo 3’s closed market system, shows that game designers
should not implement market systems into games where they do not belong
to or fit into. At the launch of Diablo 3 an in-game market was implemented.
It was an auction house similar to Blizzard’s popular World of Warcraft, with
one difference: player could make real money in selling Diablo items there.
One of the problems was, that the developers did not expect that the players
will sell nearly every item at the AH, not only epic ones. The players did so,
because the did not have any reason to do not. Another and main problem
why the market did not worked as expected was the fact, that people did
not want a market like that, because it does not fit into the gameplay. Items
are meant to be dropped by enemies in the game and not to be bought with
real money or gold. That design of the game and drop chances led to, that
players rarely got good items and had to use the AH to get good ones. In
June 2014, Blizzard removed the AH completely out of the game and did
this to the joy of most of the players [27].

1. Introduction 6

1.7 Broken Models and Virtual Worlds
In financial environments, there is no measurement of doing it right or wrong.
The traditional models of economic solutions are broken, what is proved
by the economical crash in 2008. These crashes coming back from time
to time, are caused by the same thoughts which are used over and over
again, with no new solutions. Edward Castronova said:“Complex economic
models, rely too much on human rationality and worse, they do a terrible
job predicting events.” Virtual worlds give new possibilities for researchers
about assumptions of human decision making. The problem of ideas tested
in laboratory environment, often lack on validity when transformed to the
real world. Travis Ross, a PhD candidate at Indiana University Bloomington
has the opinion, that the study and research of decision-making in games can
help us, to understand what motivates people and their behaviour. Games
can help to build a theoretical bridge between the individual motivation
and the collective outcome of complex economies [24]. Using games as test
environment brings the advantage of being able to use trial and error and
also to provide innovative new solutions. Attention has to be paid, because
not every game with an economy is suitable for real research. It is important
to keep one fact in mind that games are intended to make fun and often
problems like in the real world does not exists in-game. In most games it
does not matter in what profession a player is engaged, the game design
takes care to treat everyone equally.

1.8 Conclusion
The first ecosystems in games were simple and first not intended by the
developers. The community of players created their own trading markets,
often including a barter system. The game developers recognized, that a
market system can bring new value to the game and started to implement
real market systems and balanced game economy. Quickly it became popular
to integrate these in-game economy. But care must be taken, because not
every game is suitable for the usage of these markets. It has to fit in the
overall game design. Virtual worlds are a suitable environment to test new
ideas and approaches in economic research.

Chapter 2

Related Work

2.1 Computational Intelligence
Computational intelligence (CI) techniques are important for finding strate-
gies and solutions to behaviour in economical games. The article from the
IEEE Computational Intelligence Magazine [10], written by Dawid, Poutré
and Yao, shows an big overview about the relevant topics concerning CI.
The following section presents ideas and solutions out of this article.

Economic games can for example be games with basis in game theory or
games which using market models like microeconomics. CI is needed where
analytical or mathematical approaches end. Suitable techniques are evolu-
tionary algorithms (EA), neural networks (NN), reinforcement learning (RL)
and fuzzy systems (FS).

2.1.1 CI in Game Simulations

It has to be distinguished between the development of individual players
(agents), and the study of behaviour of players together (market behaviour).
For both situations there are according CI techniques which are capable
of learning behaviour and can be used for these issues. This can be for
example done with EAs oder NNs. Explicit bids can be represented with
chromosomes, specific actions done in certain states of the environment can
be realized with RLs, EAs, NNs or FSs. Either the agents learn on their
own, or they learn as a society (social learning). There often EAs are used.
For researches with CI it should be considered to use repeated games, be-
cause they allow the usage of learning strategies. For the creation of learning
strategies, self-play and co-evolutionary strategies are used. When dealing
with learning systems in games, it is essential to develop them also for N-
player games, because assumptions made in 2-player games, hardly fit into
N-player games conclusions. Co-evolutionary algorithms are also suitable for
games with multiple choice possibilities. They are important when modelling
realistic environments.

7

2. Related Work 8

2.1.2 CI in Simulated Markets

CI techniques also can be used to simulate economic markets. When running
the simulation of such systems, the main problem is the robustness. The
area which is handling with these issues is called agent-based computational
economies (ACE) and widely used in finance.

2.2 TAC
The trading agent competition (TAC) gives researchers the possibility to
compete with others with their agents. The goal of the competitions are,
that their agents have to compete with other agents to a specific topic. For
example, the agent should travel from A to B. It have to get a well selected
portfolio of hotel bookings, flight tickets and event tickets, but there are
many other problems to be solved at the competitions. An similar compe-
tition is done every year considering the electric labour market1. The TAC
was introduced 2000 by Wellman and Wurman [18] and since then, the in-
ternational competition is annually repeated. Participants have to build an
automated trading agent, which acts as an pc assembler and have to com-
pete with other agents for customer orders. The game simulates the typical
three-level supply chain in an pc product market: component suppliers, as-
semblers, and end customer [21]. The main issue in these events is to master
the challenges in supply chain management (SCM). The trading agent de-
sign have to be capable of well defined decision-making sequences of daily
production and product pricing. The TAC considers price (demand) and
quantity competition (supply) [21].

2.3 Intelligent Agents in Finance
Capital projects with very large investments (giga-investments) have a very
long economic life cycle, often up to sixty years. There are many unknown
and unpredictable risks and potentials and often hard to plan and predict at
start of the project. Even the requirements of these investments can change
over the whole lifetime. That can be the market for the end product or tech-
nical improvements [4]. Managers need support of decision tools for these
projects, to be able to act in an appropriate way, choose the nearest optimal
way with most profit. In this highly dynamic environment, these tools need
constant access, to new information which could affect the project, to the
real time situation of the project itself and easy access to advanced analyt-
ical tools [5]. A common solution for such decision tools are the usage of
fuzzy logic. The statement: “The project will produce a cash flow between
fifty and sixty, in two years from now”, is an typical fuzzy statement from

1http://www.powertac.org/

2. Related Work 9

financial managers. It includes his intuition about the project and if this
manager is the best expert around, then this statement is the best available
estimate of the future outcome. With fuzzy systems it is possible to use
such statements and estimates without bringing them into a single value.
The estimates are understandable by the managers and if included into the
actual estimation and profitability calculation, there is no loss of informa-
tion. Another advantage is, that the fuzzy sets can be dynamically adjusted
to reflect future trends and can give further insight into the real uncertainty
of large investments [5].

Chapter 3

Economic Basics

3.1 Overview
Before starting to create an economic system for a game, it is required to
learn simple economic basics. In the following chapter some important and
basic terms are described. Some of them also find their way into the final
implementation.

3.2 Term: Economy
In modern times the term Economy means the sum of all actions that serves
the supply of people in a society. The economic system consists of produc-
tion, distribution, trading and consumption of goods and services by different
agents in various geographical locations. These agents can be individuals,
businesses or governments. Transactions occur when two parties agree on
a certain price for a specific good or service, mostly expressed in a specific
currency.

The concept of demand and supply usually occurs in the market-based
economy. Goods and services are exchanged between the participants ac-
cording to demand and supply. The transactions are done by barter or other
mediums of exchange with a credit or debit value. In contrary to that there
is also the command-based market where decision of production and distri-
bution are handled by political parties.

3.3 Real World Stock Market
A stock market in a simple view is a organised market where buyers and sell-
ers can trade their items. But not real items but rather so called stocks. The
market is controlled by supply and demand and the market price regulates
the differences between that. A stockbroker is a person who sells and buys
the items for his clients. So the clients do not trade their goods themselves.

10

3. Economic Basics 11

Figure 3.1: Orderbook

Today it is not common any more to be locally there to trade, all the trading
are transacted over the computer and also the stock paper is only virtual.
To give clients an overview how a specific stock developed over time, there
exists the stock index. This index predicates the development of price to
amount in a certain time-slot. With this index it is easy for the clients to see
if the stock is more rising or falling over a certain time. For ordering stocks
there exists a so called order book. The client can fix a maximum price for
buying a stock, it is called Bid and he can also fix the minimum price for
selling a stock, called Ask and the difference between both is called spread.
This value has to be between Bid and Ask and is then the final stock price.
Then for the final sale the stock broker decides to which course the stock
is sold. It depends on how much profit he can make. He will take the price
which will result into the most profit what means that he will decide on how
many orders he can execute [16].

3.3.1 Orderbook

In former times, investing into stock primarily was done by going to a bank
or engage a stock broker to trade. In modern times everything is done elec-
tronically. It is common to use limit order books. This is a system, in which
all items to buy and to sell are displayed, best priced at the top of the list.
Figure 3.1 shows an example of such an order book. In the columns named
Bid the client fixes a price and amount for buying a stock. On the right hand
side in the columns named Ask the best offers for this share are displayed.
The numbers of sizes for a stock are cumulative what means when an order
for bid is executed to a price of 240.5, the item will reside in the order book
until the 2 bid offers are executed. A buying order will be executed instantly
with a price of 245.

3.3.2 Influences on Stock Market

Trading in a stock market is a psychological topic because the behaviour of
traders is influenced by expectations. These expectations can be the hope

3. Economic Basics 12

Figure 3.2: Inflation

of a better future development, or be influenced by new business numbers
either good or bad, the growth of the economy itself and also prices of
materials can influence prices at the stock [16].

Inflation and Deflation

In economic theory inflation means the reduction of the value of an currency,
see figure 3.2. The general price level of goods and services increase over a
period of time and with that it comes to a reduction in purchasing power per
unit of money. A measure of the price inflation is the inflation rate which is
calculated annually and shows the percentage of change in the general price
index [29].

Deflation describes the decrease of the general price level of goods and
services over time, see figure 3.3, means that individuals can buy more goods
with the same amount of money. Deflation occurs when the inflation rate
falls below 0%. Deflation should not be confused with Disinflation which is
a slow-down in the inflation rate [22].

3.4 Conclusion
Designing a realistic simulation of an trading system is a difficult task, be-
cause of the unpredictability of the impacts which influences market be-
haviour. Some of these effects can also occur in the virtual simulation of a
game, sometimes this behaviour is allowed and required but also often need
to be prevented.

3. Economic Basics 13

Figure 3.3: Deflation

Chapter 4

Dynamic Ingame Market
System

4.1 Overview
After retaining knowledge about real world economies, the focus in this
chapter, is on the game theoretic part. Real world economies and in-game
economies can differ but can be compared in general. The main difference
is, that virtual markets do have perfect conditions for every participant,
because every player is seen equal in the game world.
An overview about game markets in general is given. Thereafter possibilities
of creating an in-game economy are discussed and some of the results are
then used in the according implementation.

4.2 Secondary Market Place
Since the release of Blizzard’s MMORPG World of Warcraft (WoW) in 2004,
many games with this new market system followed. It made the secondary
markets mainstream. It is very popular to sell and buy WoW accounts for
real money on the internet. Users can buy accounts with specific characters
on it. The benefit for buyers are, that they do not have to invest the time
into playing to get that far1. The main problem in games like WoW, Guild
Wars, RuneScape, Lord of the Rings Online etc. is, that the developers did
not intended to give players the possibility to do this. So users who invest real
money into buying accounts or in-game currency, are risking to be banned
from the game. Paying real money for virtual currency and markets have
become a huge multi-billion dollar industry. Also power-leveling services are
very popular. These services are called Third party online gaming services.
The gold is often earned in sweatshop-like gold farms in developing countries

1http://www.thegamesupply.net/

14

4. Dynamic Ingame Market System 15

like China and India. People doing this jobs spending days in the games to
get the virtual value for very low wages. Their in-game gold is then sold for
real money to other players, often Western players. These virtual goods are
only some lines of code but gained a high reputation an luxury aura like
expensive cars, watches, and other material welfare [23, 12].

4.3 More controlled Markets
There are also more controlled markets in games, where in-game currency
is only available from the vendor itself, typically for cash. This is a popular
model for freemium games. In such games it is very common, that players
can buy themselves benefits for the game. That can be items which reduce
the amount of time needed to archive a specific goal. Reaching goals or states
in these games can often be very time-consuming and upsetting, because the
game design is also intended to do so, to make the players buy advantages
for real world money [13].

4.4 Stability in In-Game Markets
For games with an huge in-game market systems, it is an issue to guarantee a
stable economy. A good balance between currency, resources and sinks must
be found. EVE Online runs on a system based on sinks and faucets. The
sinks causes that the money is flowing out of the game such as paying taxes
and buying goods and services from Non-player-characters (NPCs). Faucets
then bring back money into the game. This faucets can be bounty prizes,
bonuses or even insurance payments. This results in an balanced economy
responding to players activities [23].

4.4.1 Cashflow

To keep the economy balanced the game design should have a look at the
MIMO concept. It means “Money in, Money out” and denotes a principle
where all the money which gets into the game, has to have a way to be
spent again. The basic rule and key equation, mentioned by D.Hart [25], of
handling currency in-game is

𝐵𝑢𝑦 + 𝐸𝑎𝑟𝑛 = 𝑆𝑝𝑒𝑛𝑑. (4.1)

Taking World of Warcraft as an example, daily quests produce money
regularly and buying an epic armour reduces it again. This balance between
gaining and spending is highly important for in-game economies. Inflation
is not caused by the money in pockets of the players but rather the balance
of MIMO does [13].

4. Dynamic Ingame Market System 16

4.4.2 Creation of a Game Economy

In the creation of an economic system in a game, there are no fixed rules
or theories how to do this. It is necessary that the market system fits into
the game, means it should not undermine the character of the game. As an
game developer you have the advantage to do trial and error on your own
game economy, if one part of the system does not work as expected, you try
to find another solution to fix it. It is also a fact that traditional economics
do not even work perfectly in the real world. But despite these facts, there
are many tips on how to get started or what should basically be considered.
The basic rule is that also the market system fits into the core loops of the
game. A big problem in designing a economy in games is, that there is a
infinite supply of resources and materials so a game designer has to think
about on how players can spend their money and endless supply. To have
a look at the MIMO system it is essential to create important, desirable
items for the players. This items should most of the time be temporarily,
means that the player has to buy it more than once in the game history.
Prices could be adjusted dynamically regarding the market situation or the
richness of players. It is also valuable to adjust the prices over the lifetime of
your game. In World of Warcraft the epic mounts in the early times where
very precious and expensive, it even was not so easy to gather gold. But
in newer add-ons it were made much easier to collect money and with that
also mounts are more easier to get. So Blizzards approach was, to implement
other kind of mounts that could not be bought with gold, instead players
have to gain certain achievements or doing quests for it.

Apart from the money based approach there is also the possibility of
using a more barter based system which is also easier to handle, because it
is harder to manipulate the flow of items than the flow of money.

4.4.3 Methods to prevent Inflation

In games there can happen inflation and deflation, but it does not happen to
the currency. One piece of gold will be always one piece of gold in the game
world. With the same amount of gold, players can buy the same amount of
items at the NPCs (Non-playable characters) at every time. The drops or
rises concern the resources itself, it is the value of the items which changes.
But apart from that the rules are nevertheless valid. As already mentioned,
it is important for the game economy to create the right money sinks. Such
sinks can be

• Exchange fees: At the vendor the player gets less money for items,
but on the AH he has to pay a certain percent of fee for selling it.

• Automatic money sinks: They scale to the richness of the player.
• Auctions intended from the game developers: At this events,

money goes completely out of the game and does not only change its

4. Dynamic Ingame Market System 17

owner. Such an event could be for example a lottery where players can
win rare items.

• Death penalty: If players die, their armour and other equipment
gets damaged and need to be repaired. The costs could scale with
the quality of equipment. For expensive armour, the repair costs are
higher.

4.4.4 Bi-Transactional Markets

The concept of a bi-transactional market means that players do both, place
sell and buy orders for any item. In most auction-house based games only
placing sell orders are possible. An auction house can be somewhat compared
to a broker. You present your item in the auction house and place the sell
order. You do not have to wait to get the item sold, instead you will get
a message when someone has bought your item, so the auction house is
doing the work for you. Many games using auction houses where players
only can place sell orders. It is only common that players can place a bid
on items and hope nobody will bid more on it. In markets with only sell
orders, the market is purely supply-driven. Buyers have no influence on the
price of the item. The available actions are only buy or not buy. The prices
in such markets are only supply-driven resulting in maybe unfair prices or
even failing transactions because the market stagnates.
In Eve-Online it is possible to place both: sell and buy orders, working as
described earlier in this thesis. Using this kind of system makes the traders
to compete each other finding the best prices for selling and buying the
items, but not too high or too low to make no profit. These markets are
supply and demand-driven. Any user of the market can see the lowest and
highest prices for items in the market. Most of the players do not want to
compete in market and only want to get fair deals [13].

Market Order

The market order (see figure 4.1) system provides a guaranteed execution
but the investor does not have any control over the price. The price is fixed
by the economy which depends on supply and demand.

Limit Order

The limit order system (see figure 4.2) can give a guarantee that the items
are sold to the desired price but not to be executed. It can happen that the
investor has to wait for a long time to sell his items.

4. Dynamic Ingame Market System 18

Figure 4.1: Market Order System

Figure 4.2: Limit Order System

4.5 Conclusion
In this chapter the main part was about gaining knowledge about how to
take real economics and put it into a game to simulate an economy. It
depends on the game and the game design how to design the economy then.
There are many freedoms, but one thing always should kept in mind: get
the money out of the game again.

Chapter 5

Simulating Virtual Markets

5.1 Overview
The next step in the creation of the game economy, is to occupy with the
mechanics behind an economy simulation. What ideas are used for topics
like this? During the research for the thesis, in nearly every paper about
simulating economies, the topic Fuzzy Logic has been used. But there is a
huge amount of methods and ideas how to accomplish this. Some of the
ideas are basically described and Fuzzy Logic and Genetic algorithms are
regarded closely.

5.2 A Game Theoretic Simulated Market
If there is the talk about economic games, games with basics in game theory
with an economic background or models in micro-economics are meant. Ex-
amples for the first are negotiation, auction and the prisoner’s dilemma [10].
The first thoughts which can be made about creating a simulated market,
if there are learning capabilities by the agents, if the agents learn on their
on experiences or if they use knowledge from the whole market behaviour.
But for creating a real-life-like market model there are different challenges
to handle. There are so many impacts that influences markets, like interest
rates, the rate of economic growth and surely liquidity and also natural dis-
asters. But these effects are non-linear, non-stationary and time-lagged [1].
Especially one group of computational models seems to be very appropriate:
Natural Computing Algorithms but there are also other approaches for de-
signing economical simulations. This chapter also goes deeper into the fuzzy
logic system and will be described very detailed because the implementation
(later in this thesis) is also using it.

19

5. Simulating Virtual Markets 20

5.3 Natural Computing
Natural Computing Algorithms receive their inspiration from the nature
itself. The used phenomena exists in high-dimensional and dynamic envi-
ronments which is also typical for financial markets [1]. Fitting methods
according to Anthony Brabazon [1] for creating economic intelligence based
on nature:

• Neurocomputing It takes it’s inspiration from structure of the hu-
man brain and uses it in simplified models of it. Along with that the
Artificial Neural Networks (ANN) also come under the Neurocomput-
ing. ANNs are used for prediction, classification and clustering.

• Evolutionary Computing These methods underlie the Neo-Darwinian
principles and is a population-based model in which the fitness of a
individual solution is the measure of quality.

• Social Computing For Social Computing algorithms the swarm be-
haviour of birds, fish and ants are examined. It contains self-organization,
flexibility, robustness and the communication between members, di-
rectly or indirectly.

• Immunocomputing As Neurocomputing the Immunocomputing con-
cept takes it’s inspiration from the biology. It’ ideas are based on the
biological immune-system and is able to recognize, destroy and remem-
ber thousands of foreign bodies. This models are ideal for classifica-
tion and optimization problems. In financial issues it can be used for
financial pattern recognition to identify possible fraudulent credit card
transactions.

• Physical Computing Physical Computing uses physical methods
like simulated annealing and quantum mechanics.

• Developmental & Grammatical Computing Algorithms based
on Grammatical Computing uses concepts which are also found in
linguistic grammars.

5.3.1 Evolutionary Computation

The history of evolutionary computation reaches back into the years of Alan
Turing where he writes about the possibilities of evolutionary search. Evolu-
tion selects individuals depending on their relative success in surviving and
reproducing [1]. Figure 5.2 shows the cycle of the process of evolutionary
computation, how to obtain variations in every generation. Individuals can
be represented in different ways, for example:

• as simple binary strings with fixed length,
• complex data graphs,
• computer-code with flexible length.

5. Simulating Virtual Markets 21

Figure 5.1: Natural Computing Algorithms [1]

Figure 5.2: Cycle of evolutionary computation [1]

With simple binary strings it could be possible to decide, if the agent
should take an variable or not, like a sell and buy action [1]. The choice of
the fitness-function takes influence on the behaviour of the model. Genetic
search operators are used to breed high-quality solutions. The selection of
the best individual is fitness-based where fitness measures the quality of
problem solving.

5.3.2 Genetic Programming

Using genetic programming (GP) allows it, that the model structure can
evolve together with the parameters. Instead of using fixed-length strings
GP uses variable length what brings the benefit that the model does not
have to know the solution structure yet. This makes it a perfect candidate
for the usage in finance theory, which is rich in data but have a lack of
theory. The use of GP gives a better insight in the system and provides
a more human readable pattern. GP also allows to use domain knowledge,

5. Simulating Virtual Markets 22

what means that persons with knowledge in finance and trading can use this,
to influence the evolutionary process with his strategies and see the possible
improvements afterwards. Also for optimization problems in complex finance
theory, GP can be used [1].

Evolutionary algorithms have the benefit, that agents based on genetic
approaches, have the ability of learning. It can include only themselves or
even other agents or participants.

A genetic algorithm (GA) can be used for the simulation of a competitive
system. The stock price model is non linear, stochastic and fully controlled
by the agents. With the GA algorithm it is possible to promote the fitness
of an individual and the survival of the fittest. The GA algorithm can be
split into three modules:

• Population,
• Fitness evaluation,
• Reproduction.

Genetic Algorithm

Genetic algorithms are discrete optimization methods inspired by evolution
and were invented for solving non-linear non-quadratic problems [9]. This
evolutionary approach is based on the fitness of the individual (survival of
the fittest) called genome. The three main modules of a GA are the following:

• Population The size of the population depends on the size of the
search space because the bigger the search space the larger the popu-
lation.

• Fitness evaluation Describes the individual which is evaluated every
round.

• Reproduction Describes how the next generation of genomes will be.
The outcome of individuals can be split into three parts:

– elite individuals or its children go to the next generation without
any changes,

– mutations, some genes from the parent individuals are changed
for the new generation,

– cross-over, some genes from two parent individuals are combined
for the new generation.

Each individual is represented through a collection of chromosomes and
each gene position either takes the value 0 or 1. The initial population is
chosen random. The search for the fittest is driven by the repetition of in-
teractions between agents and other agents (artificial mating) and the envi-
ronment (through fitness evaluation and selection). While iterating through
the population samples the solution may converge to the most fit. There is
no guarantee that the solution is correct, but the probability rises with each

5. Simulating Virtual Markets 23

iteration. For creating the most fit individual, biological operators are used
to combine the best individuals which are going then to the next iteration.
Following operators are used:

• Selection Probability of surviving is assigned to individuals, based
on relative fitness. A high fitness value, leads to a high probability of
selection.

• Crossover Can be seen as artificial mating. Two individuals with high
fitness values may produce an offspring with a higher fitness value. A
high fitness value leads to a high probability of mating.

• Mutation It represents innovation with random adjustments in the
individuals genetic structure.

5.3.3 Fuzzy Logic

Another common approach in designing a simulation of virtual markets, is
using Fuzzy Logic. Lotfi A. Zadeh published his theory of fuzzy logic in 1973.
Generally in mathematics and logic, only binary values are used to describe
statements. Such statements are called crisp values. But sometimes it is too
hard, or to much effort to describe a system or situation mathematically.
Fuzzy logic becomes handy when it is intended to work with imprecise,
noisy, vague or missing information [26]. In binary models an element either
belongs to a specific set or not. There is nothing in-between. Using Fuzzy
Logic it is possible to design overlapping statements. There are basically
three steps in the process of designing a fuzzy-logical system:

• Fuzzification Crisp input values are converted into fuzzy input sets.
• Fuzzy Rules Fuzzy inputs are processed with fuzzy rules to create

fuzzy output.
• Defuzzification Result is an output dimension which shows the suit-

ability to perform specific actions.
The suitability of actions is defined by the membership functions.

Membership Function

For each element in the system there exists a membership value which de-
scribes how much an element is related to a statement, partial membership
is possible. Describing the grade of membership either formulas or tables
are used. Membership functions can have different forms. Basically there
are three forms: Triangle, Trapezoid, Singleton (peak at value 1) [28].

Linguistic Terms

For example the terms it rains and it costs money are linguistic terms and
are used to characterize the problem statement. They can attain values

5. Simulating Virtual Markets 24

between 0 (false) and 1 (true). Giving a statement a value of 0.5 means that
this statement is half true. Linguistic terms are human readable and the goal
is to use the natural language to build a fuzzy expression like Temperature
t is cold, Product x is expensive.

Fuzzy Sets

The linguistic terms mentioned before are segmented into more precise state-
ments called fuzzy sets. For the money example above, fuzzy sets with follow-
ing values can be created: it costs little, it costs not that much, it is expensive.
These terms often overlap and the passages are fuzzy where they end and
start. The price is not cheap until a certain cap, the degree of fulfilment of
the statement cheap reduces step on step while expensiveness rises.

Fuzzy Rules

Fuzzy rules are needed to convert input values into the according actions.
Using rules all possible combinations and actions are determined. Every rule
has one or more input values. These input values have to be converted from
crisp values into fuzzy values which is called Fuzzification. For every value in
the linguistic term, a degree of fulfilment is assigned. Looking at the example
of cost and a range of values of 0 and 1, the term it costs little has a value of
0.45, the term it costs not that much a value of 0.1 and it is expensive value
of 0. If the fuzzification is ready, the next step is to write the rules which
are built with if then instructions. Additionally to the existing linguistic
terms, another set of terms is added. Suitable values could be the term
wealth, divided into low wealth, average wealth and high wealth. With both
input sets the output actions are calculated. For the output values there are
according actions. For this example this could be: Buy many, Buy some, Do
not buy anything. This approach is called Inference. Different operators for
the conjunction between the linguistic terms are available in fuzzy system.
Common are AND (see figure 5.3) and OR (see figure 5.4). The fuzzy logical
AND is an intersection of two fuzzy sets, and OR is the unification [28].

5. Simulating Virtual Markets 25

Figure 5.3: Dynamic system with fuzzy logic

Figure 5.4: Dynamic system with fuzzy logic

The output will be defuzzified into a crisp value on a scale of ⟨−𝑛, +𝑛⟩,
where −𝑛 means that the agent should not buy, 0 is neutral and does not
have a fixed action, +𝑛 is a good deal and the agent will definitely buy.

Defuzzification

Before any action can be fired, it is important to defuzzify the fuzzy output
set into a crisp value with an acceptable range. There are many different
methods to do this and basically divided into two groups: maxima methods
and distribution methods. The maxima methods are more suitable for rea-
soning systems, the distribution methods for fuzzy regulators [20].

5. Simulating Virtual Markets 26

• Mean of Maximum The Mean of Maximum (MoM) calculates the
most plausible result. In contrast to averaging the degrees of member-
ship of the output set, the MoM-method selects the typical value of the
most valid output term. The disadvantage is, that only the maximum
peak of the membership function is considered.

• Center of Gravity The Center of Gravitiy (CoG) uses the integral
calculus to obtain the centre of gravity of the output set.

5.4 Conclusion
The advantage of using a fuzzy system is, that no models for describing a
problem mathematically are needed. This makes it more human readable
and easy to understand. It even reduces effort because there is no need
to find complex mathematical functions for modelling. Fuzzy systems are
commonly used when the specifications of a problem are fuzzy, noisy or
incomplete.

Chapter 6

Intelligent Agents

6.1 Overview
When creating an economy for a game, there can be situations where it is
necessary to support the economy with artificial agents. These agents should
simulate players and they give the game designer the possibility to influence
the in-game markets without direct intervention. This can be useful in cases
where the economy is not stable as expected or if it is the game’s concept
to manipulate the market. In the following chapter the concepts of creating
an artificial intelligence is illuminated.

6.2 Intelligent Agents
An artificial agent is an computational created intelligent individual, who
acts with certain behaviour, situated in an environment. This environment
can be real, like for robotic agents, but also only virtual like in computer
games. As Franklin and Graesser [8] said: “An agent is a system, situated
within and a part of an environment, that senses the environment and acts
on it, over time, in pursuit of its own agenda”. The agent perceives informa-
tion about its environment with its sensors and can act with its actuators,
both can also be real or virtual. There are many different kinds of agents,
also some with learning abilities. For developing agents with economic back-
ground, if they should have the ability to learn, we can decide either on
agents which learn on their on from previous actions or learn together as a
society.

Differences to Object Oriented Design

Designing agents differs from traditional object orientated programming in
many issues. An object is an encapsulation of an entity, like a person or
anything in the real world. These objects define the structure of a class. The

27

6. Intelligent Agents 28

system of object orientation categorize and arrange the whole program to
make a simple picture of the real world problem. The differences to agent
systems are following according to Wooldrige [19]:

• Agents are more autonomous than objects.
• Objects have no control when they are used and when methods are

executed, agents can decide on their own when to execute certain jobs.
• Agents can have flexible behaviour.
• Multi-agent systems are multi-threaded, at least the agent have one

thread of control.

Properties of Agents

Properties defines how agents work and how complex they are. Russell and
Norwig [15] determined following properties, which defines the simplest ver-
sion of an agent (weak agent):

• Autonomy The agent is acting by himself without any intervention.
• Reactivity The agent reacts to stimulations and decides when to

execute its jobs.
• Pro-activity The agents reacts in the best possible way to possible

actions in the future.
• Social Ability The agents has the ability to communicate with other

agents or also with human beings.
More complex agents can have more properties [6, 19] for example:

• Adaptivity The agent has the ability to learn based on previous ex-
perience.

• Rationality The agent can perform rational, informed decisions.
• Versatility The agent can have multiple goals.

Autonomous Agents

Autonomous agents are working independently from intervention, and are
situated in an environment with other agents, and objects but can also be
alone, like an data mining agent searching for specific data in a database.
These agents can have many different behaviours ranging from purely re-
active to cognitive behaviour. A purely reactive agent is only stimulated at
it’s senses. There is less need to maintain the representation of the environ-
ment because the environment is it’s own database and can simply look-up
by direct interaction. An agent can be called cognitive when it is dependent
from the stimulus from outside. It uses representations of the environment to
check what is happening and to decide for it’s appropriate actions. Reynolds
[14] says, that combinations of properties of agents define different classes
of agents (see table 6.1).

6. Intelligent Agents 29

Table 6.1: Classes of autonomous agents [14]

Type of agent Description Example
Virtual agents Real agents which are

situated in a virtual
world.

Non-playing characters
(NPC) in games.

Virtual semi-
autonomous
agents

These agents situated in
a virtual world and are
partly autonomous and
partly controlled by hu-
mans

First-person shooters in
games, agents in sport
simulation games

Simulated agents These agents are situ-
ated in a virtual world
and studied by a simu-
lation.

Artificial life simula-
tions

6.2.1 AI Agents and Environments

As mentioned before an environment is the world around the agent and
everything in it, what is not the agent itself. It lives and operates there. The
whole environment is designed after the purpose and must not have realistic
limits, because in virtual environments also physics can be altered. Examples
for that are games. Artificial agents there, can maybe fly or teleport, but also
in simulations there are no boundaries. Environments can be distinguished
by their attributes, table 6.2 shows possible environment attributes.

6.2.2 Agent Behaviour

The behaviour of an agent defines the way it acts in certain situations.
These situations are defined by environmental conditions, the current cir-
cumstances and the knowledge currently available. If an agent do not have
enough information to choose the optimal path, it may decide to search for
further knowledge about the actual situation. The behaviour can be designed
with sub-behaviour [17]. Aspects of behaviour are [17]:

• Sensing and movement,
• Recognition of the current situation with classification,
• Decision-making based on the recognized situation,
• The execution of the appropriate actions.

6.2.3 Trading

For trading, investors have to identify objects which are worth trading.
Agents have to determine which objects are either under-priced (good value)

6. Intelligent Agents 30

Table 6.2: Environment attributes [19]

Attributes Description
Observable/Partially Ob-
servable

An agent has to observe its environment
so this environment itself must be observ-
able. An partially observable environment
could be for example the “fog of war” in
games.

Deterministic/Stochastic An environment can be considered fully
deterministic when actions always have
the same outcome so the future state of an
action can be completely determined. A
stochastic model have some unpredictable
issues and influences the outcome.

Episodic/Sequential If agent’s actions do not affect the future
states or influences by previous states then
the environment is episodic otherwise se-
quential.

Static/Dynamic A static environment does not change like
in a turn-based game, in between each
moves nothing happens. When an agent
does not do any action in an dynamic en-
vironment, it’s choice is to do nothing.

Discrete/Continuous In a discrete environment the amount of
possible values are limited instead of con-
tinuous environment the values are infi-
nite.

Single-agent/Multi-agent In a multi-agent system agents are able
to act cooperatively or competitively with
other agents. In single-agent environments
the other agents can be seen as part of the
environment.

or over-priced. For that the agent or investor has to have a screening to find
out in which stock to invest. The more technical approach to this prob-
lem is to identify imbalances in the supply and demand economy with
the information of prices and volume. A technical indicator could be the
moving average convergence divergence (MACD). The MACD is calculated
by taking the difference between a long-run and a short-run moving av-
erage. A trading rule could be as mentioned in the paper [1]: 𝐼𝐹 𝑥 −
𝑑𝑎𝑦 𝑀𝐴(𝑚𝑜𝑣𝑖𝑛𝑔𝑎𝑣𝑒𝑟𝑎𝑔𝑒) 𝑜𝑓 𝑝𝑟𝑖𝑐𝑒 ≥ 𝑦 − 𝑑𝑎𝑦 𝑀𝐴 𝑜𝑓 𝑝𝑟𝑖𝑐𝑒
𝑇𝐻𝐸𝑁 𝑏𝑢𝑦 𝐸𝐿𝑆𝐸 𝑠𝑒𝑙𝑙

6. Intelligent Agents 31

If the solution is positive than this could be a buy signal and a sell signal
could be sent for negative values.

6.3 Conclusion
Artificial intelligent agents are systems which can sense their environment
and act accordingly and autonomous. Artificial agents can decide on their
own, when and what actions to perform. The environment around the agent
has also influence on the behaviour of the agent. It does matter if the en-
vironment is fully or only partially observable or if the outcome of actions
is always the same. A requirement for an AI agent is the ability of realizing
price changes of items.

Chapter 7

Implementation

7.1 Overview
Until here, the thesis presented how to create a working in-game market
system with artificial intelligent agents, in theory. In the following chap-
ter, it goes deeper into the real implementation, resulting of the previous
gained information and knowledge. Suitable methods for the solution will
be described in more detail. The implementation consists of two main parts,
the graphical user interface and the second part, the agents, which are also
divided into different modes of agents. The different modes describe their
behaviour. In the following sections the strategy used is described in detail,
also explained with some code snippets and charts.

7.2 Strategy Development
Because this thesis deals with an implementation of an in-game market
system, the constraints for this trading system may differ from real financial
systems. First it is important to think about what players should be able
to do in-game. These constraints are forming the outer shape of the system.
The possible actions of players affect also the trading system and hereafter
also the work of the agents.

For example it could be possible to design the economy in an ancient
way of trading. The players have to go to a special place where they can
trade. This concept is often used in MMORPG’s where the players identifies
themselves with the characters. There it is also thinkable that the players
can order a stockbroker who is responsible for buy and sell, done for the
player. What is important in simulating a realistic market cycles is the
speed of running a simulation. For getting fast results it is not possible
to run the simulation in real-time. Changes in the economy system should
be early recognized and then adjusted till the outcome is acceptable. The
simulation should also run several times to get an aggregate behaviour and

32

7. Implementation 33

robust enough to get realistic economic results from it [10].
The agents in this system should be able to control the market and when

desired, even to manipulate it. The agents should give players the feeling,
that there are other players in the game world, with which they can trade.
Additionally it is desired to keep the market economy dynamic, to give
players an incentive to use the market tool.

7.3 In-Game Market System
The dynamic in-game market system described in this paper, was basically
developed for the open world multi-player game Silent6. The game is situ-
ated in the space and is comparable with Minecraft. There are no specific
goals for the players, they only have to survive. In order of that, it is impor-
tant that the player collects resources from the planets around him. He need
it to upgrade his own ship to get further in the space. He can also defend
himself from not getting killed by other players. So the players is forced more
or less to collect items. If the player goes further he will find more planets
with new and more valuable items. Because of that, the player maybe do
not longer need some of the basic stuff. But to throw it away would be a
wasting of invested time, so the game gives the player the opportunity to
sell his items somewhere and still get revenue from the items. Because of the
fact that it is a multi-player game, a overall trading system is very suitable.

When designing a trading algorithm the structure of the market itself
has to be determined. It is important how investors or agents can interact
with this market. In this thesis there are two basic system modes for the
market: Market order and Limit order.
The first system serves as a platform between players. Players can buy items
from another player via the market system. The items are sold in so called:
stacks. That means, the selling player decides how many stacks he wants to
sell, and fixes a price for this stack. This approach is like an auction house,
which is often used in games. The other players then can buy exactly this
stack for the fixed price. Within the second system, the price is fixed by the
market and economy itself. The users can buy the desired amount of items
to a fixed price. Normally the value of the item varies to the price of buying.
Here the player is able to buy the quantities from an item he wants. That
means, he is not bound to a certain stack size but there are no benefits at
the pricing. Here it is only possible to place market orders.

7.3.1 The Market’s Ecosystem

In the current implementation the market order system is accomplished. It
consists of two parts the graphical user interface and the agents working in

7. Implementation 34

Figure 7.1: System overview

the background of the system. Figure 7.1 shows an overview of the actual
implemented market.

The market system is bound to an MongoDb database in which all items
are saved. At the first start, the game designer can add a list of items with
initial amount and price, also with a description for each item. At start the
program connects to this database and grabs the data and insert it into the
market. The agents are invisible to the users. They work in the background
of the program and interacting directly with the market place. Different
agents with different logic and behaviour are situated here and try to decide
on buy or sell actions at specific time steps. The players interact over the
game and the graphical user interface (GUI) with the market and can also
do the same as the agents. The functions can be described in more detail,
figure 7.2 shows the steps graphically.

When resources going out and into the market, the amount steadily
changes. Also the price of each resource have to be adjusted to fulfil the
requirements of a demand and supply system. It is important to do this
step because otherwise there would be no dynamic behaviour in the market.
The prices would always be the same and it would be very boring to use the
market. So at specific time-steps, which are also editable by the developer,
the prices of each resources are adjusted to fit the new amount of items
available on the market. For the calculation only items in the market itself
are considered, items which are in the inventories of players and agents, are
not included in the calculation. The calculation is kept simple: For every
percent of items which are missing compared to the previous time-step, the

7. Implementation 35

Figure 7.2: Flowchart of system

price rises or fall for exact this value of percent. If there are 5% less items
of one resource in the market than before, the price will rise to +5% of the
original price. The consequences are: if players only buy one specific resource
but do not sell it into the market, the prices will rise slowly and in the future
it will be very expensive to purchase these items. The other way round is
when players only selling the same resource, there will be too much items
in the market and the price will drop. This could then be attractive to buy
these resources again, because they are cheaper than before.

7.3.2 The Market Interface

The market interface itself (see figure 7.3), is created for the players for
placing sell and buy actions. It has a list with available items in the market,
with informations like price and available amount of each item. The players
can buy and sell items with desired amount but to a fixed price. The value
of the item and its price to buy differs around 10% but can also be set to
a other desired value or even be adjusted dynamically during the game’s
life. So in this market system it is only possible to place buy orders and the
transactions are done immediately.

The market is also able to offer more features, but not implemented yet:
• Comparison of two items Price and price over time.
• An order book All actual orders from the player are saved here

(needed for market order system).
• My tradings At this tab the player can have a look at his previous

transactions.

7. Implementation 36

Figure 7.3: Graphical market tool

Figure 7.4: Agent’s procedure

7.4 The Design of the Agents
The artificial trading agents were developed because of the fact, that in early
stages of the game, there will be few gamers, but the market system, as an
important feature in the game, will only be interesting, when it makes sense
to use it. If there are few players, then the market will not be very dynamic,
players will not be able to make good transactions or big profit. So the idea
came up to implement an artificial agent system, which is able to simulate
the missing players. It should also be able to handle the ecosystem, so that
the game designers can influence and manipulate the market indirectly if
needed.
A system was developed which uses a complex and simple trading agent. The
method for the complex agent is divided into different phases, graphically
described in figure 7.4. The agent is able to handle the standard mode or
using fuzzy logic.

The agent depends on his demand on a certain product and quantity of
this product. The demand depends on the actual market situation and on
chance, as shown in figure 7.5.

The agent has a value of demand, for measuring how much he needs the
goods. At start the initial value of demand is set randomly. The possible

7. Implementation 37

Figure 7.5: Demand composition

Figure 7.6: Assessment of Demand

range for values are 1% to 100%. To get the value of demand, a assessment
of demand is required. For deciding at which item the action should be
done, the agent gets an item randomly. Also the amount of the items is set
randomly.

7.4.1 Assessment of Demand

The agent starts with a randomly selected initial value of demand. Then
at a specific time-step this value is raised or lowered. At every time-step
the value is manipulated at fixed steps, means, that at the beginning of the
simulation, a value for the units to step is set, that could be for example
at 5%. So at every time-step the value of demand is raised/lowered for 5%,
starting by 1% ending by 100%. For retrieving the info if it should raise or
fall, a random selected value of 0 or 1 is taken. If 0 the value of demand
lowers, if 1 the value rises. An example is shown at the chart in figure 7.6.

The resulting percentage is then used to identify the actions which are
available to the agent at a certain value of demand. The agent has to decide,
out of a pool of actions which to take, depending on the received value of
demand. It can either be done in the way shown above or in fuzzy mode
which is described in the next section. The last important issue for the
agent to decide on buying or selling an item is the assessment of price.

7. Implementation 38

7.4.2 Assessment of Price

The assessment of price is needed to decide, if the actual price of an item is
cheap or expensive. First, the quality of price has to be calculated. This is
done with

ActualPrice
PaidPrice = PriceValue. (7.1)

If the agent did not bought any resource of this item before, then the
actual price of the item, is used for the next steps. With this new information
it is possible for the agent to make a decision on the action. The previous
created values of demand can now be used for that. The values have to be
classified into groups of actions. The classification depends on the design of
the agent, if it has a more greedy or rational thinking. Another developed
method for this thesis, is to define actions for specific percentage steps.
Percentage steps are fixed thresholds at which the actions change.

Looking at the value of demand at 50%. As a reference the quality of
price is taken. If the result is greater than 1 than the agent will sell the item.
If the result is lower than 1 than the agent will buy it. The thresholds for
the actions are defined for every percentage step. At both ends of the scale
only one action can occur. That is because of the fact, that items would be
sold, when the price is very good but also having high demand at the top
of the scale, and would be bought at a good price but with absolutely no
demand at the lower end of the scale.

7.4.3 Conclusion of Agent Solution

Because of the randomly selected values the whole system is very dynamic
and can simulate irregularities of the economy. This system also gives the
opportunity to tweak values to adjust the procedures to specific needs. Dif-
ferent values can have different impact on the agents behaviour. The re-
sults can be easily compared but can also uses different agent behaviours.
The constants time-steps, initial value of demand and percent steps can be
changed to tweak behaviour. The time-steps could be greater or smaller, or
also randomly changed. The percentage steps for the value of demand can
be bigger/smaller/random. The values also can be used in a more dynamic
way and can change over time.

7.5 Other Methods

7.5.1 Fuzzy Approach

A second method for decision making is implemented. It is the approach
of using fuzzy logic. Fuzzy logic can be used for fuzzy regulation, that is

7. Implementation 39

Figure 7.7: Dynamic system with fuzzy logic [28]

a system that can actively regulate a dynamic environment (see figure 7.7)
[28].

The approach starts with the observation of the environment, means that
the agent tries to figure out the requirements of the system and of the world
around him. Next the available crisp values have to be fuzzified. That means
that the input variable the price is 10 currency has to be converted into It
is cheap. But no program can work with such expressions, so every linguistic
term also has an membership function which describes the membership to
a specific group. The more the term belongs to a group the higher the value
of the membership. If the value is definitely not in the group, then the
membership is 0. The next step is the inference. It is simply the progress of
converting the input fuzzy set, with the first fixed rules, to a output fuzzy set.
All outputs with an membership greater than 0 have to be considered and be
converted with an mathematical function into a crisp value which is called
defuzzification. The rules shown in table 7.1 are used in the implementation.

At the end of the process the program has an fuzzy output value. With
the usage of an method of defuzzification this fuzzy value, is converted into
a crisp value with which decisions can be made. For the creation of the fuzzy
approach a Java library is used: jFuzzyLogic, it is described in more detail
in the next section.

7. Implementation 40

Table 7.1: Fuzzy rules

Rule Cost Need Result
1.Rule low low buy
2.Rule average low sell
3.Rule high low sell
4.Rule low average buy
5.Rule average average sell
6.Rule high average sell
7.Rule low high buy
8.Rule average high buy
9.Rule high high buy

7.6 Tools and Frameworks

7.6.1 Mongo DB

MongoDB is an open-source cross-platform document oriented database. It
is an NOSQL-based system and written in C++. Because it is document-
based the database can handle JSON -like objects which makes it easier
to model the data because it is a more natural approach. In this project
MongoDB is used to store the games item data.

At start of the market tool, the database must run and the market
connects to the database and receives its items which are populated before
out of an .json document.

The item resource list is written in JSON format. Developers can ma-
nipulate the available data entries and if adding new elements, they should
have the format

1 { "_id" : { "\$oid" : "52f0c534996e0a0e09d06458" }, "name" : "
Stone", "detail" : { "amount" : 31, "price" : 31, "
description" : "This is Stone" } }

The connect method
1 try {
2 client = new MongoClient("localhost", 27017);
3
4 /**** Get database ****/
5 // if database doesn’t exists, MongoDB will create it for you
6 database = client.getDB("marketDb");
7
8 /**** Get collection / table from 'testdb' ****/
9 // if collection doesn’t exists, MongoDB will create it

7. Implementation 41

10
11 collection = database.getCollection("items");
12
13 } catch (UnknownHostException e) {
14 e.printStackTrace();
15 }
16 }

is used to connect to the running MongoDB instance. After the connection
to the database was successful the items are requested from it

1 public Set<String> getCollections() {
2 Set<String> tables = database.getCollectionNames();
3
4 for (String coll : tables) {
5 System.out.println(coll);
6 }
7 return tables;
8 }

And as easy it is to get this data, it is to change it
1 public void updateData(String _keyOld, Object _valOld, String

_keyNew, Object _valNew) {
2 BasicDBObject query = new BasicDBObject();
3 query.put(_keyOld, _valOld);
4
5 BasicDBObject newDoc = new BasicDBObject();
6 newDoc.put(_keyNew, _valNew);
7
8 BasicDBObject updateObj = new BasicDBObject();
9 updateObj.put("\$set", newDoc);

10
11 collection.update(query, updateObj);
12 }

7.6.2 JavaFx

JavaFX is an framework for cross-platform Rich-Internet-Applications. The
current release supports desktop computers and web browsers and there is
also a mobile version for mobile platforms. It is pre-installed since Java 7.6
and since JavaFX 2.0, developers can write JavaFX code in standard Java
style, in previous versions a scripting language was used. Many graphical
objects are derived from the original Java GUI environment. New custom
elements are easy to create, reuse and they are style-able with CSS. Oracle
also introduced the SceneBuilder in version 2.1. It is a graphical design tool
with which developers are able to create GUI easily with drag- and drop-able
GUI elements. The so created layout is then saved in an .fxml file which is
an special form of XML. This file then can be loaded in the standard Java
application. Such an FXML file can look like

7. Implementation 42

1 <AnchorPane minHeight="0.0" minWidth="0.0" prefHeight="385.0"
2 prefWidth="575.0" xmlns="http://javafx.com/javafx/8" xmlns:fx="

http://javafx.com/fxml/1"
3 fx:controller="at.fhooe.im.controller.FXMLControllerAgent">
4 <children>
5 <Button fx:id="startAgentButton" layoutX="421.0" layoutY="

94.0"
6 mnemonicParsing="false" onAction="#handleButtonEvent"

prefHeight="40.0"
7 prefWidth="102.0" text="Start Agent" />
8 <Button fx:id="stopAgentButton" layoutX="421.0" layoutY="

148.0"
9 mnemonicParsing="false" onAction="#handleButtonEvent"

prefHeight="40.0"
10 prefWidth="101.0" text="Stop Agent" />
11
12 <Label layoutX="421.0" layoutY="8.0" prefHeight="30.0"
13 prefWidth="45.0" text="Timer: " />
14 <Label fx:id="labelTimer" layoutX="472.0" layoutY="9.0"
15 prefHeight="29.0" prefWidth="56.0" text="Label" />
16 <TextArea fx:id="textFieldData" layoutX="20.0" layoutY="14.0"
17 prefHeight="356.0" prefWidth="385.0" />
18 </children>
19 </AnchorPane>

Loading the JavaFX application is done in the main method
1 public static void main(String[] args) {
2 Application.launch(FXMLLoad.class, args);
3 }
4
5 @Override
6 public void start(Stage primaryStage) throws Exception {
7 instance = this;
8 mainContainer = new ScreensController();
9 agentContainer = new ScreensController();

10 agentContainer.loadScreen(AGENT_SCREEN, AGENT_SCREEN_FXML);
11 agentContainer.setScreen(AGENT_SCREEN);
12
13 StackPane secondaryLayout = new StackPane();
14 secondaryLayout.getChildren().add(agentContainer);
15 Scene secondScene = new Scene(secondaryLayout, 600, 400);
16
17 Stage secondStage = new Stage();
18 secondStage.setTitle("Agent");
19 secondStage.setScene(secondScene);
20 secondStage.show();
21
22 mainContainer.loadScreen(MARKET_SCREEN, MARKET_SCREEN_FXML);
23 mainContainer.setScreen(MARKET_SCREEN);

7. Implementation 43

24
25 StackPane root = new StackPane();
26 root.getChildren().add(mainContainer);
27 Scene scene = new Scene(root);
28 primaryStage.setScene(scene);
29 primaryStage.show();
30 }

with a reference to the .fxml layout file. With the creation of different
stages, it is possible to handle multiple instances of JavaFX windows. For
accessing the data from this FXML design files there is the need to create a
controller class for each layout file in which the GUI elements can be accessed
with the same name qualifier with the notation @FXML

1 @FXML
2 private Button buttonSell;
3 @FXML
4 private ListView<String> itemList;

7.6.3 jFuzzyLogic

jFuzzyLogic1 is an open source Java library for Fuzzy Logic, also including
an Eclipse plug-in. It implements a Fuzzy Control Language (FCL) to de-
scribe fuzzy systems to reduce programming effort. The fuzzy system can
be easily described in a fuzzy manner. The library contains many methods
for defuzzification and different methods for rule creation [2, 3].

The following code shows an example of an FCL file
1 VAR_INPUT // Define input variables
2 need : REAL;
3 costs : REAL;
4 END_VAR
5
6 VAR_OUTPUT // Define output variable
7 action : REAL;
8 END_VAR
9

10 FUZZIFY need // Fuzzify input variable
11 TERM minimal := (0, 1) (40, 0) ;
12 TERM average := (10, 0) (40,1) (60,1) (90,0);
13 TERM high := (60, 0) (100, 1);
14 END_FUZZIFY
15
16 FUZZIFY costs // Fuzzify input variable
17 TERM low := (-20, 1) (20,0) ;
18 TERM average := (-10, 0) (30,1) (50,1) (60,0);
19 TERM high := (50, 0) (100,1);

1http://jfuzzylogic.sourceforge.net/html/index.html

7. Implementation 44

20 END_FUZZIFY
21
22 DEFUZZIFY action // Defuzzify output variable
23 TERM doNothing:= (0,0) (5,1) (10,0);
24 TERM sell := (10,0) (15,1) (20,0);
25 TERM buy := (20,0) (25,1) (30,0);
26 METHOD : COG; // Use ’Center Of Gravity’ defuzzification method
27 DEFAULT := 0; // Default value is 0
28 END_DEFUZZIFY
29
30 RULEBLOCK No1
31 AND : MIN; // Use ’min’ for ’and’
32 ACT : MIN; // Use ’min’ activation method
33 ACCU : MAX; // Use ’max’ accumulation method
34
35 RULE 1 : IF need IS minimal AND costs IS high THEN action IS

sell;
36 RULE 2 : IF need IS minimal AND costs IS average THEN action IS

sell;
37 RULE 3 : IF need IS minimal AND costs IS low THEN action IS buy

;
38
39 RULE 4 : IF need IS average AND costs IS average THEN action IS

sell;
40 RULE 5 : IF need IS average AND costs IS high THEN action IS

sell;
41 RULE 6 : IF need IS average AND costs IS low THEN action IS buy

;
42
43 RULE 7 : IF need IS high AND costs IS high THEN action IS buy;
44 RULE 8 : IF need IS high AND costs IS average THEN action IS

buy;
45 RULE 9 : IF need IS high AND costs IS low THEN action IS buy;
46
47 END_RULEBLOCK
48 END_FUNCTION_BLOCK

With the FCL language it is easy to describe the fuzzy system. It accepts
every size of variables and membership declarations. Also different methods
for defuzzification are available. The framework is able to understand Java
code and the fuzzy system also could be implemented only in Java. With
the according Java classes it is possible to get results directly at runtime
and use them to get the crisp output values for the actions.

7.7 Conclusion
For the creation of the agents, the gained knowledge from the previous chap-
ters is used. There is the standard method where the agents decide depen-

7. Implementation 45

dent on demand values and prices, and the additional method where the
decisions for actions happens using fuzzy logic. Fuzzy logic is an convenient
approach to describe an system which has no crisp values, and where it is
hard to decide for one or another action. It is a handy way to decide, if an
resource is to expensive for the actual value of desire. It also offers a way
to make a problem more human readable and then pass it to the program
which can also work with these expressions.

Chapter 8

Evaluation

8.1 Overview
The implementation of the market system and the agents which belongs to
it, has to be tested and evaluated, to examine if the expectations are fulfilled.
In this chapter it is described how this is done and if the result is showing a
success. First the parameters and requirements of the agents are described.
Followed by the results of changing and experimenting with parameters. At
the end of this chapter, a résumé is given, if the used approaches are suitable
for the idea of creating an in-game-market system, controlled by artificial
agents.

8.2 How to Test Artificial Agent Systems
Testing AI systems is more complicated than simply testing if the program-
ming part works. It is important to analyse the outputs and compare it to
other similar systems, to get a solid picture of the systems behaviour, and if
it is working properly. Without the correct evaluation, it is nearly impossi-
ble to check if progress has been made, or if the design issues have met. For
evaluation the right questions have to be asked and also the answers have
to be interpreted in the right way. Basic questions to be asked can be:

• Is the system stable? What happens when prices drop/rise heavily?
• How do the agents react?
• How have prices changed?

The case of heavily dropping or rising prices, is described by the phe-
nomenons of Inflation and Deflation. The clear definition of these terms
are described in the previous chapter of the economical basics. Important in
these situations is, that the game design is able to catch the economy before
it gets critical. A simple solution to both situations could be, that the agents
can change their behaviour and do only sell or buy actions, depending on

46

8. Evaluation 47

the current situations. An example: If the market shows indicators of rising
prices, they could possibly only do selling actions to get more items back
into the market economy. For deflation then the other way round. For being
able to answer all questions proposed to the system it is also relevant to
define the basic parameters. Different parameters with different values will
bring different results. For testing the system efficiently, it is necessary to
define a bunch of varied starting situations.

8.3 Setting the Basic Parameters
For testing variations of situations and entry points, the agents are designed
to accept a configuration file. For every different agent, a agent configuration
file has to be passed. The file consists of these initial values

1 public boolean fuzzyMethod = false;
2 public String name = "";
3 public int initialCapital = 0;
4 public int maxAmount = 0;
5 public int initialDemandValue = 0;// 1-100 possible
6 public int demandValueSteps = 0;// 1-100 possible
7 public int actionSpeed;// in milliseconds

These values arrange the outcome of the agents actions and if the values are
set different, also the agents acting different. Every parameter affects the
agents in different ways.

The parameters in the configuration-file are all required:
• FuzzyMethod Defines if the agents should use the fuzzymethod or

the normal method.
• Name The agent can have a name as identifier to distinguish between

others.
• Initial Capital Sets the initial capital value for the agent.
• Max amount Is used to define how much items it can buy/sell at

each transaction.
• Initial demand value The demand value is needed to decide how

important it is for the agent, to do the actions).
• Demand value steps This parameters fixes the steps, with which

the agents demand values are rising/falling.
• Action speed Sets the speed of the agent.

The configuration issues can be easily extended and passed to a new designed
agent with new behaviour. After setting initial values and behaviour, the
concrete test cases in which the agents should act have to be defined.

8. Evaluation 48

Table 8.1: Test-cases

Parameters Test 1 Test 2 Test 3
Amount of items on market 200.000 1.000 500.000
Amount of money for agents 10.000 10.000 1.000
Maximal amount for actions 20 50 50

Initial value for demand 50 50 50
Steps for demand value 10 10 10

8.4 Define Testing Situations
For testing the agents with set parameters, it is important to first decide
on a test case. Test cases define the world around the agents. That means
that also the market tool receives initial values. Dependent on these values,
the agents will behave differently. Parameters for the market itself can be
the initial amount of resources and also the according prices. Changes there,
will have direct impact on the behaviour of the agents and also on the whole
economy. For the first tests, the agents are tested with a market with very
few/much resources available. According to this test case following questions
are formed:

• Does the agent buy/sells anyway?
• How the simple agents react?
• How the complex agent react (fuzzy, normal)?
• What effects does the price adjustment have?
• How the initial values effect the agent behaviour?

At start of the tests, it is hard to predict the exact outcome, so maybe there
is the need to adjust the questions during the testing phase. For getting an
game environment which fits the needs of the game, can be an elaborate task
and has to be done by trial and error and regularly adjustment of parameters
and values.

The following table 8.1 shows the exact parameters which are set for the
testing sessions. Three different tests were started, where each test consists of
a simple agent, a complex agent with his standard behaviour and a complex
agent with fuzzy behaviour. In each test session, each agent can perform
1440 transactions, which matches a day in real-time simulation, because the
agents are restricted to only make one transaction per minute.

The initial amount of the items is set by the database, the parameters
are set in the agent’s configuration files and passed to the agents at the start
of the simulation. Looking to the next section, the according results of these
test cases are shown and described in detail. To be able to compare the

8. Evaluation 49

results, every agent receives the same amount of money and also the other
parameters are set with the same values.

8.5 Results
After setting all steps including initial values and test cases, the system
can be run for testing. Starting with the first test where market and agents
wealth is balanced.

8.5.1 Test-Run 1

In the first test, both the agent’s and the market’s wealth are balanced.
So neither the market nor the agents are poor in items or currency. The
results of the first test case are shown in figure 8.1. In the first figure 8.1a
the wealth over time of the complex agent in its normal mode, can be seen.
It is clearly visible, that there are heavy drops, but it also rises again. The
heavy drop is resulting of a transaction of buying a huge amount of an
expensive item. At the current status of implementation, the agent does not
estimate the amount of the items in each transaction. The value to choose,
is set randomly with a cap. Instead looking at figure 8.1b, where the fuzzy
approach is displayed, it can be recognized that there are no big drops. The
agents wealth is rising steadily. With that information, it can be assumed
that the fuzzy approach is better to weight the goodness of an price of an
item. The fuzzy approach is also more handy because the game designer can
build the rules and define the actions, as he imagines. The problem with
the normal mode is, that setting the borders, when to do which action, is
harder to decide and maybe needs more time to tweak, to get the expected
result. But this approach is nevertheless not useless, because maybe the
game designer intends the agent to work not perfect and also to make loss.

There is also another agent used in the tests (see figure 8.2a), the simple
agent, which only does sell and buy transactions randomly. He does not
consider, if the price of selling is good or bad, and the amount of items for
each transaction is also set randomly with a cap. Depending on the use case,
even this simple approach can be used but behaviour can only be influenced
by the initial parameters.

The market system is able to adjust the prices of items, according to the
current amount on the market. Figure 8.2b shows the course of price over
the time, in which the agents can perform transactions. Because there are
more buy than sell actions and therefore more resources in the market, the
price is slowly falling.

8. Evaluation 50

(a) Complex agent’s in normal mode
wealth over time

(b) Complex agent’s in fuzzy mode
wealth over time

Figure 8.1: Test-case 1: Comparison of complex agent’s behaviour modes

(a) Simple agent’s wealth over time (b) Price of item over time

Figure 8.2: Test-case 1: Simple agent’s wealth and price of an item over
time

8.5.2 Test-Run 2

In the second test the market is poor in items, but the agent is rich in
currency. Looking at the charts in figure 8.3 it can be seen, that the amount
of available resources on the market, has direct impact on the wealth of each
agent. If the market is poor in items, the agents do not take much time to
buy every item in the market, which causes in extremely dropping prices (see
figure 8.4b). If there is no system, players or other agents, who can fill up
the market with resources steadily, the agents will not be able to make much

8. Evaluation 51

(a) Normal agent’s wealth over time (b) Fuzzy agent’s wealth over time

Figure 8.3: Test-case 2: Comparison of complex agent’s behaviour modes

(a) Simple agent’s wealth over time (b) Price of item over time

Figure 8.4: Test-case 2: Simple agent’s wealth and price of an item over
time

profit, which is clearly visible in the chart of the normal agent’s chart 8.3a
the fuzzy agent’s chart 8.3b and the chart 8.4a of the simple agent. The
profit curve is situated in the lower half of the chart and is not able to rise,
because there are no resources to buy.

8. Evaluation 52

8.5.3 Test-Run 3

In the last and third test, the agent is poor in currency and the market
is rich in items. Despite the fact, that the agent has not much currency
at start, the fuzzy approach is able to make good profit over the time (see
8.5b). Generally a random based approach like the simple agent’s behaviour,
clearly does not have a stable outcome. The price of the item (see figure 8.6b)
is again slowly falling, because of the perfect work of the fuzzy agent, who is
able to maximize it’s profit, even if the initial values are bad. The behaviour
of the complex agent using the normal mode, is not optimal in the point
of view of profit. The tweaking of the parameters of this agent, is more
complicated and obscured.

(a) Normal agent’s wealth over time (b) uzzy agent’s wealth over time

Figure 8.5: Test-case 3: Comparison of complex agent’s behaviour modes

8.6 Conclusion
The evaluation of artificial intelligent systems can often be hard. Also game
design has an impact on the test-cases and often trial and error is the only
method to get valuable and desired results. After some testing-sessions it can
be assumed, that the ecosystem and it’s according agents, met the majority
of the goals set at start of the project. The agents are able to decide for
different actions dependent on the actual parameters. The behaviour can be
changed at start by changing initial parameters. Each parameter influences
the final outcome. Each agent has to run in its own thread where it is encap-
sulated from the primary game loop. That makes it possible, that the game
also can run without it’s agents. They can even be removed in a later state
of the game, when there are not needed any more. Look upon the differences

8. Evaluation 53

(a) Simple agent’s wealth over time (b) Price of item over time

Figure 8.6: Test-case 3: Simple agent’s wealth and price of an item over
time

of the normal and the fuzzy agent, it can be assumed, that both approaches
are usable in a game economy. Both can interact dynamically with their
environment and can be adjusted to fit the specific needs. The agents can
also be duplicated and their clones can have other initial parameters.

Generally, the fuzzy agent is a straightforward approach. with the usage
of the jFuzzyLogic library, it is pretty easy to define rules, membership values
and defuzzifier methods. Each value of membership can be adjusted simply.
The fuzzy agent can be trimmed, to work profit orientated, as seen in the
test-cases.

The agent in normal mode, is a bit more complicated in usage. The
developer has to have a clear idea of caps for the prices. He has to define
clear caps where prices are too high or which value of demand represents
a certain group of need. The output of the normal mode agent, is not as
clear as of the fuzzy one and depends highly on random values. This leads
to the fact, that the behaviour is maybe not clearly fixed. This agent is
more suitable, when developers intend to make the agent to work not in a
perfect way. Even the simple random agent can be useful in-game, when the
requirement is, to be unpredictable.

Summarized it can be stated, that the chosen plans and ideas of the
implementation are an success. They basic requirements are satisfied. There
are different agents, which are easy to extend and behaviour can be tweaked.
They are able to interact properly with their environment and do not cause
any inferences on the players. The agents are capable of manipulating the
market and simulate other players.

Chapter 9

Conclusion

The topic of virtual markets either in games or in real life, is a very inter-
esting subject in sciences, because it is also an very actual topic. There is a
big spreading of different knowledge bases: finance and economy theory, ar-
tificial intelligence when it comes to simulating agents, different methods of
learning algorithms like evolutionary algorithms and neural networks, game
design when it comes to add virtual markets to a game or when to research
economical issues with games. The thesis tried to show the diversity of this
subject and to present a specific part out of this topic pool. It dealt with
the creation of an simulated market system for a multi-player game. To get
into this topic, it was essential to present the low-base economical basics
which are used. Furthermore it has to be described how virtual markets
are in actual games, how the work and what other issues there are which
are associated with virtual markets. The creation of a in-game economy dif-
ferentiates from economies in the real world, because the requirements are
different. But concepts which are used for simulating real world markets, are
also useful for simulating a game economy. Because a simulated market can
not work without participants, it is also meaningful to implement an artifi-
cial agent system which are capable of interacting with the virtual economy
and influence it. The ideas of how to simulate markets are coming in here
and used in one of the final agents. The ideas from the previous chapters are
then united in the last chapters of implementation and evaluation, where a
real in-game market simulation has been built.

9.1 Development Potential
The main goals which were set at the beginning, are almost accomplished.
The now available framework prototype can be taken as a basis for further
development and research. Sadly it was not possible to test the system in
the real game, only in a closed testing environment. That would be a highly
desirable goal for the future. Because only in the real environment, it is

54

9. Conclusion 55

possible to test appropriate and to adjust the system to the game. The pre-
sented implementation is in a prototype status and can be further developed.
It would be interesting to test more different methods for the agents like ge-
netic algorithms or other appropriate approaches presented in this thesis.
For the development of the agents, there are many possibilities to change or
optimize the behaviour. Suitable and desirable improvements would be:

• Smarter agents
– Actions depend on the agent’s wealth and available items.
– Dynamic behaviour depending on the actual market and economy

situation. More buy-actions when the market has few resources
left and more sell-actions when there are many resources.

– Agents have the ability to learn from their previous actions and
change them.

– Agents can look at previous price changes, even if they have not
bought that item before.

• Service for item creation Add a service which is responsible to fill
the market with new items to prevent that the market can run out of
resources when agents buy to much.

• More agents Creating more agents, even of the same type. This could
be interesting to test, if the behaviour changes if there are more agents.

References

Literature
[1] Michael O’Neil Anthony Brabazon. “An Introduction to evolutionary

computation in finance”. In: IEEE Computational Intelligence Maga-
zine 4 (2008), p. 14 (cit. on pp. 19–22, 30).

[2] Pablo Cingolani and Jesus Alcala-Fdez. “jFuzzyLogic: a Java Library
to Design Fuzzy Logic Controllers According to the Standard for Fuzzy
Control Programming”. In: International Conference on Fuzzy Sys-
tems. IEEE. 2013, pp. 61–75 (cit. on p. 43).

[3] Pablo Cingolani and Jesus Alcala-Fdez. “jFuzzyLogic: a robust and
flexible Fuzzy-Logic inference system language implementation”. In:
International Conference on Fuzzy Systems. IEEE. 2012, pp. 1–8 (cit.
on p. 43).

[4] Mikael Collan, Christer Carlsson, and Péter Majlender. “Fuzzy Black
and Scholes Real Options Pricing.” In: Journal of Decision Systems
12.3-4 (2003), pp. 391–416. url: http://dblp.uni-trier.de/db/journals/
jds/jds12.html#CollanCM03 (cit. on p. 8).

[5] Mikael Collan and Shuhua Liu. “Fuzzy logic and intelligent agents: to-
wards the next step of capital budgeting decision support”. In: Indus-
trial Management & Data Systems 103.6 (2003), pp. 410–422. eprint:
http://www.emeraldinsight.com/doi/pdf/10.1108/02635570310479981
(cit. on pp. 8, 9).

[6] O. Etzioni, Oren Etzioni, and D. S. Weld. “Intelligent Agents on the
Internet: Fact, Fiction, and Forecast”. In: IEEE Expert 10 (1995),
pp. 44–49 (cit. on p. 28).

[7] Joshua A.T. Fairfield. “Virtual Property”. In: Indiana Legal Studies
Research Paper No.35. Boston University Law Review. Washington &
Lee University School of Law, 2005 (cit. on p. 2).

[8] Stan Franklin and Art Graesser. “Is It an Agent, or Just a Program?:
A Taxonomy for Autonomous Agents”. In: Proceedings of the Work-
shop on Intelligent Agents III, Agent Theories, Architectures, and Lan-

56

http://dblp.uni-trier.de/db/journals/jds/jds12.html#CollanCM03
http://dblp.uni-trier.de/db/journals/jds/jds12.html#CollanCM03
http://www.emeraldinsight.com/doi/pdf/10.1108/02635570310479981

References 57

guages. ECAI ’96. London, UK: Springer-Verlag, 1997, pp. 21–35 (cit.
on p. 27).

[9] David E. Goldberg. Genetic Algorithms in Search, Optimization and
Machine Learning. Boston, MA, USA: Addison-Wesley Longman Pub-
lishing Co., Inc., 1989 (cit. on p. 22).

[10] Xin Yao Herbert Dawid Han La Poutre. “Computational Intelligence
in Economic Games and Policy Design”. In: IEEE Computational In-
telligence Magazine. Nov. 2008, p. 75 (cit. on pp. 7, 19, 33).

[11] Bernd Lehahn. “The open universe in X rebirth”. In: Making Games
6 (2013), pp. 32–35 (cit. on p. 5).

[12] Vili. & Ernkvist Mirko Lehdonvirta. Converting the Virtual Econ-
omy into Development Potential: Knowledge Map of the Virtual Econ-
omy. Washington, DC; infoDev World Bank, 2011. url: http://www.
infodev.org/articles/converting-virtual-economy-development-potential-
knowledge-map-virtual-economy (cit. on p. 15).

[13] Simon Ludgate. “Virtual Economic Theory: How MMOs Really
Work”. In: Gamasutra (Nov. 2010). url: http://www.gamasutra.com/
view/ feature/134576/virtual_ economic_ theory_ how_ mmos_ .php?
(cit. on pp. 2, 3, 15, 17).

[14] Craig Reynolds. Steering Behaviors For Autonomous Characters. 1999
(cit. on pp. 28, 29).

[15] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern
Approach. 2nd ed. Pearson Education, 2003 (cit. on p. 28).

[16] Christoph A. Scherbaum. So funktioniert die Boerse. Haufe Lexware,
Feb. 2013 (cit. on pp. 11, 12).

[17] William John Teahan. Artificial Intelligence - Agent Behaviour. Book-
boon.com, 2010 (cit. on p. 29).

[18] Michael Wellman and Peter R. Wurman. “A Trading Agent Compe-
tition for the Research Community”. In: Proc. of IJCAI-99 Workshop
on Agent-Mediated Electronic Trading. 1999 (cit. on p. 8).

[19] J.M. Wooldridge. Econometric Analysis of Cross Section and Panel
Data. MIT Press, 2002 (cit. on pp. 28, 30).

[20] Lotfi A. Zadeh. “Fuzzy sets”. In: Information and Control. University
of California, Berkley, California, 1965, pp. 338–353 (cit. on p. 25).

[21] D. Zhang and K. Zhao. “Economic model of TAC SCM game”. In:
Proc. of the IEEE/WIC/ACM International Conference on Intelligent
Agent Technology. Beijing, China. Sept. 2004, pp. 273–280 (cit. on
p. 8).

http://www.infodev.org/articles/converting-virtual-economy-development-potential-knowledge-map-virtual-economy
http://www.infodev.org/articles/converting-virtual-economy-development-potential-knowledge-map-virtual-economy
http://www.infodev.org/articles/converting-virtual-economy-development-potential-knowledge-map-virtual-economy
http://www.gamasutra.com/view/feature/134576/virtual_economic_theory_how_mmos_.php?
http://www.gamasutra.com/view/feature/134576/virtual_economic_theory_how_mmos_.php?

References 58

Online sources
[22] Bundeszentrale für politische Bildung. url: http : / / www . bpb . de /

nachschlagen / lexika / lexikon - der - wirtschaft / 19723 / inflation (cit. on
p. 12).

[23] Kyle Chayka. The Very Real Value of Gaming’s Virtual Economies.
Aug. 2013. url: http : / / www . psmag . com / navigation / business -
economics/the-real-value-of-virtual-economies-eve-world-of-warcraft-
64593 (cit. on pp. 4, 15).

[24] Aaran Fronda. Virtual worlds and broken economic models. Aug. 2013.
url: http://www.theneweconomy.com/technology/virtual-worlds-and-
broken-models (cit. on pp. 2–4, 6).

[25] Dan Hart. Balancing Your Game Economy, and profiting from. Oct.
2011. url: http://www.gdcvault.com/play/1015151/Balancing-Your-
Game-Economy-Lessons (cit. on p. 15).

[26] S. D.. Kaehler. Fuzzy Logic Tutorial. Encoder: The Newsletter of the
Seattle Robotic Society. url: http://www.seattlerobotics.org/encoder/
mar98/fuz/flindex.html (cit. on p. 23).

[27] Adi Robertson. Blizzard shutting down ’Diablo III’ auction house,
wants players to get back to killing monsters. Sept. 2013. url: http:
//www.theverge.com/2013/9/17/4742120/blizzard- shutting- down-
diablo-iii-auction-houses (cit. on p. 5).

[28] Václav Slavíček. FuzzyFramework. Jan. 2011. url: http : / / www .
codeproject . com/Articles/151161/Fuzzy - Framework (cit. on pp. 23,
24, 39).

[29] Europäische Zentralbank. url: http : / / www . ecb . europa . eu / ecb /
educational/hicp/html/index.de.html (cit. on p. 12).

http://www.bpb.de/nachschlagen/lexika/lexikon-der-wirtschaft/19723/inflation
http://www.bpb.de/nachschlagen/lexika/lexikon-der-wirtschaft/19723/inflation
http://www.psmag.com/navigation/business-economics/the-real-value-of-virtual-economies-eve-world-of-warcraft-64593
http://www.psmag.com/navigation/business-economics/the-real-value-of-virtual-economies-eve-world-of-warcraft-64593
http://www.psmag.com/navigation/business-economics/the-real-value-of-virtual-economies-eve-world-of-warcraft-64593
http://www.theneweconomy.com/technology/virtual-worlds-and-broken-models
http://www.theneweconomy.com/technology/virtual-worlds-and-broken-models
http://www.gdcvault.com/play/1015151/Balancing-Your-Game-Economy-Lessons
http://www.gdcvault.com/play/1015151/Balancing-Your-Game-Economy-Lessons
http://www.seattlerobotics.org/encoder/mar98/fuz/flindex.html
http://www.seattlerobotics.org/encoder/mar98/fuz/flindex.html
http://www.theverge.com/2013/9/17/4742120/blizzard-shutting-down-diablo-iii-auction-houses
http://www.theverge.com/2013/9/17/4742120/blizzard-shutting-down-diablo-iii-auction-houses
http://www.theverge.com/2013/9/17/4742120/blizzard-shutting-down-diablo-iii-auction-houses
http://www.codeproject.com/Articles/151161/Fuzzy-Framework
http://www.codeproject.com/Articles/151161/Fuzzy-Framework
http://www.ecb.europa.eu/ecb/educational/hicp/html/index.de.html
http://www.ecb.europa.eu/ecb/educational/hicp/html/index.de.html

Messbox zur Druckkontrolle

— Druckgröße kontrollieren! —

Breite = 100 mm
Höhe = 50 mm

— Diese Seite nach dem Druck entfernen! —

59

	Declaration
	Kurzfassung
	Abstract
	Introduction
	Goal of the Thesis
	The Beginnings
	Virtual Economy
	The Price of Time
	Mixing Real and Virtual Money
	Games using In-Game Markets
	MMO-RPGS
	Example of Failure

	Broken Models and Virtual Worlds
	Conclusion

	Related Work
	Computational Intelligence
	CI in Game Simulations
	CI in Simulated Markets

	TAC
	Intelligent Agents in Finance

	Economic Basics
	Overview
	Term: Economy
	Real World Stock Market
	Orderbook
	Influences on Stock Market

	Conclusion

	Dynamic Ingame Market System
	Overview
	Secondary Market Place
	More controlled Markets
	Stability in In-Game Markets
	Cashflow
	Creation of a Game Economy
	Methods to prevent Inflation
	Bi-Transactional Markets

	Conclusion

	Simulating Virtual Markets
	Overview
	A Game Theoretic Simulated Market
	Natural Computing
	Evolutionary Computation
	Genetic Programming
	Fuzzy Logic

	Conclusion

	Intelligent Agents
	Overview
	Intelligent Agents
	AI Agents and Environments
	Agent Behaviour
	Trading

	Conclusion

	Implementation
	Overview
	Strategy Development
	In-Game Market System
	The Market's Ecosystem
	The Market Interface

	The Design of the Agents
	Assessment of Demand
	Assessment of Price
	Conclusion of Agent Solution

	Other Methods
	Fuzzy Approach

	Tools and Frameworks
	Mongo DB
	JavaFx
	jFuzzyLogic

	Conclusion

	Evaluation
	Overview
	How to Test Artificial Agent Systems
	Setting the Basic Parameters
	Define Testing Situations
	Results
	Test-Run 1
	Test-Run 2
	Test-Run 3

	Conclusion

	Conclusion
	Development Potential

	References
	Literature
	Online sources

