
Data-Driven Soundtracks for Chess

Stefan Höller

M A S T E R A R B E I T
eingereicht am

Fachhochschul-Masterstudiengang

Interactive Media

in Hagenberg

im November 2019

© Copyright 2019 Stefan Höller

This work is published under the conditions of the Creative Commons License Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)—see https://
creativecommons.org/licenses/by-nc-nd/4.0/.

ii

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Declaration

I hereby declare and confirm that this thesis is entirely the result of my own original
work. Where other sources of information have been used, they have been indicated
as such and properly acknowledged. I further declare that this or similar work has not
been submitted for credit elsewhere.

Hagenberg, November 26, 2019

Stefan Höller

iii

Contents

Declaration iii

Abstract viii

Kurzfassung ix

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 1
1.3 Document Structure . 2

2 Chess 3
2.1 Principles and Metrics . 3

2.1.1 Move . 3
2.1.2 Attacks . 3
2.1.3 Castling . 5
2.1.4 Blunder . 5
2.1.5 Material . 5
2.1.6 Mobility . 6
2.1.7 Initiative . 6
2.1.8 Pawn Structure . 7
2.1.9 Passed Pawn . 7
2.1.10 Development . 7
2.1.11 Imbalances . 7
2.1.12 Phases of Chess . 7

2.2 Chess Engines Overview . 8
2.2.1 First Mechanical Chess Players 8
2.2.2 Shannon’s Chess Engine Definition 10
2.2.3 Chess Engines Pursuit to Gain Strength 11

2.3 Chess Engine Principles . 12
2.3.1 Board Representation . 12
2.3.2 Static Evaluation Function . 13
2.3.3 Look-Ahead Procedure . 13
2.3.4 Opening Book . 14
2.3.5 End Game . 15

2.4 Stockfish . 15

iv

Contents v

2.5 Universal Chess Interface . 15
2.6 Chess Notations . 16
2.7 Centipawn . 16
2.8 Score . 17
2.9 Elo Rating . 17
2.10 Summary . 17

3 Adaptive Soundtracks 19
3.1 Audio Programming Languages . 19
3.2 FMOD . 21
3.3 Choosing the Appropriate Audio Program 22
3.4 Controlling Adaptive Soundtracks . 22
3.5 Audio Synthesis for Chess . 24

3.5.1 Reunion . 24
3.5.2 Reunion2012 . 25
3.5.3 Music for 32 Chess Pieces . 26

3.6 Summary . 26

4 Data-Driven Soundtracks for Chess 28
4.1 Requirements . 28
4.2 Limitations . 30
4.3 First Soundtrack Design . 30

4.3.1 Samples . 31
4.3.2 Audio Tracks . 31
4.3.3 Leading Player . 31
4.3.4 Intensity . 32
4.3.5 Possible Moves . 32
4.3.6 Is Check . 32
4.3.7 Move Category . 32
4.3.8 Attackers Count . 33

4.4 Second Soundtrack Design . 33
4.4.1 Samples . 33
4.4.2 Base Layers . 34
4.4.3 Fluctuation . 34
4.4.4 Unopposed Threats . 34
4.4.5 Mistake . 35
4.4.6 Is Capture . 35
4.4.7 Possible Moves . 35
4.4.8 Attack/Defense Relation . 35

4.5 Summary . 35

5 Implementation 37
5.1 Architecture . 37

5.1.1 Database . 40
5.2 Details on the Chess Analysis Tool . 40

5.2.1 Open a Chess Game . 40
5.2.2 Connect to Stockfish . 40

Contents vi

5.2.3 Main Program for Chess Analysis 41
5.2.4 Computing Score and Best Move 42
5.2.5 Categorize Difference between Best and Actual Move 43
5.2.6 Analyzing Captures . 44
5.2.7 Detect Attacks . 45
5.2.8 Detect Guards . 45
5.2.9 Detect Unopposed Threats . 46
5.2.10 Determine the Number of Possible Moves 46
5.2.11 Determine the Number of Threats 47
5.2.12 Parameter Definitions . 47

5.3 Details on the FMOD Studio Event . 51
5.4 Details on the Chess Music Tool . 52

5.4.1 Loading a Game into Chess Music Tool 52
5.4.2 Load FMOD Bank . 53
5.4.3 Initialize FMOD Parameters . 53
5.4.4 Fluctuating Score . 54

5.5 Summary . 54

6 Evaluation 56
6.1 Heuristic Evaluation . 56

6.1.1 Method . 56
6.1.2 Adjusted Approach . 58
6.1.3 Result . 59
6.1.4 General Feedback . 62

6.2 Chess Metric Ranking . 62
6.3 Chess Metric Evaluation . 63

6.3.1 Score and Score Change . 64
6.3.2 Threats . 65
6.3.3 Mistakes . 66
6.3.4 Captures . 68
6.3.5 Legal Moves . 70

6.4 Real-Time Evaluation . 71
6.5 Summary . 72

7 Conclusion 73
7.1 Evaluation Results . 73
7.2 Future Prospects . 75
7.3 Conclusion . 76

A Technical Details 77
A.1 Project Directory . 77

B CD-ROM/DVD Contents 79
B.1 PDF-Files . 79
B.2 Project . 79
B.3 Miscellaneous . 80

Contents vii

References 81
Literature . 81
Audio-visual media . 83
Online sources . 84

Abstract

Chess is a complex game that most people have played and basically understand, but
very few truly master. This complexity has been extensively studied, resulting in very
large amounts of collected data that have led to nearly unbeatable virtual opponents.
Nevertheless, few players can truly appreciate the dynamics of individual piece move-
ments and their associated strategies. Sounds can provide the necessary context for
players to understand the game easier.

A game of chess can be utilized to generate audio. Thanks to the development of
many audio programming languages, it is possible to synthesize audio using chess as
input in real-time. The project created for this thesis analyzes already played chess
games and uses the calculated metrics as an input for controlling a soundtrack. The
soundtrack aims to be subtle and enjoyable over longer periods of time, as chess games
tend to be minutes or even hours long. The thesis determines promising chess metrics
which provide better context for inexperienced chess player. Inexperienced chess players
tend to wrongly evaluate a dangerous situation and subsequently make erroneous moves.
To compensate this lack of knowledge the soundtrack provides the necessary information
to signal the danger of the situations to the players.

The sound design was evaluated by three experienced but amateur chess players in
a heuristic evaluation, which revealed issues in the implementation. A metric list ranks
the metrics for their suitability in the sound design. A chess metric evaluation illustrates
their average development throughout nearly a thousand chess games. Furthermore, a
real-time analysis evaluates the chess parameters’ versatility in a real-time scenario. The
concept for a chess soundtrack for inexperienced players has the potential to provide
new insights, as well as being applicable for learning chess.

viii

Kurzfassung

Schach ist ein komplexes Spiel, welches die meisten Menschen schon einmal gespielt ha-
ben und im Grunde verstehen, aber nur sehr wenige wirklich beherrschen. Diese Kom-
plexität wurde eingehend untersucht, was in einer sehr großen Menge an gesammelten
Daten resultierte und zu fast unschlagbaren virtuellen Gegnern geführt hat. Dennoch
können nur wenige Spieler die Dynamik der einzelnen Züge und die damit verbundenen
Strategien wirklich schätzen. Töne können den notwendigen Kontext für diese Spieler
bieten, um das Spiel besser verstehen zu können.

Eine Schachpartie kann zum Erzeugen von Tönen verwendet werden. Dank der Ent-
wicklung vieler Audio-Programmiersprachen ist es möglich, Töne mit Schach als Einga-
be in Echtzeit wiederzugeben. Das für diese Arbeit erstellte Projekt analysiert bereits
gespielte Schachpartien und verwendet die berechneten Metriken als Eingabe für die
Steuerung des Soundtracks. Der Soundtrack soll subtil und angenehm über einen län-
geren Zeitraum sein, da Schachpartien in der Regel Minuten oder sogar Stunden dau-
ern können. Die Arbeit ermittelt vielversprechende Schachmetriken, die einen besseren
Kontext für unerfahrene Schachspieler bieten. Gelegenheitsspieler neigen dazu, eine ge-
fährliche Situation falsch einzuschätzen und anschließend fehlerhafte Züge auszuführen.
Um diesen Mangel an Wissen auszugleichen, liefert der Soundtrack die notwendigen
Informationen, um den Spielern die Gefahr der Situation zu signalisieren.

Das Sounddesign wurde von drei erfahrenen Amateurschachspielern in einer heuris-
tischen Bewertung analysiert, die geholfen haben Probleme bezüglich der Implementie-
rung aufzuzeigen. Eine Liste von Schachmetriken reiht die Metriken nach deren Taug-
lichkeit im Sounddesign. Eine Bewertung der Schachmetriken veranschaulicht deren
durchschnittliche Entwicklung in fast 1000 Schachpartien. Darüber hinaus bewertet ei-
ne Echtzeitanalyse die Verwendbarkeit der Schachparameter in einem Echtzeit-Szenario.
Das Konzept eines Schach-Soundtracks für unerfahrene Spieler hat das Potenzial, neue
Einblicke in das Spiel zu bieten, als auch für das Lernen von Schach anwendbar zu sein.

ix

Chapter 1

Introduction

This thesis describes a data-driven soundtrack for chess, the chess-related principles
involved for determining a set of chess metrics suitable for such a soundtrack, as well as
the background for creating an adaptive soundtrack in detail.

1.1 Motivation
In a game of chess, two players try to anticipate each other’s next moves to checkmate
before the other player seizes the opportunity. This does not only include the knowledge
of the possible moves by all pieces, but even more the right utilization of strategies
and avoidance of errors. Unless players practice the game, it is almost impossible to
comprehend what is happening on the chessboard. Therefore, most strategies behind
the game remain hidden to casual players. Hence, to clarify the meaning for these
strategies, sound can highlight these dynamics. Generating sound based on the data of a
chess game was developed as an art installation and even as software system to introduce
non-musicians to musical composition. Each project triggers sounds when moving chess
pieces. As a result, this can be used to create an impression of the dynamics of chess
games. Despite adding a new level of perception, these systems do not try to provide
new context to the game itself, but rather emphasize on sound generation. Analyzing
a chess game and incorporating sounds which interpret the player’s performance could
increase the insights into the game’s strategies. To enable players to identify the current
situation properly, the system requires unique sounds which transmit certain meanings.

1.2 Problem Statement
A soundtrack for chess giving new insights for inexperienced players has the novel prob-
lem of determining a set of chess metrics providing the right information in any given
situation. As for chess analysis, chess engines utilize a large set of parameters to evaluate
chess and compute the best moves for any position. Chess engines aim to surpass the
best chess players and since the 90s chess engines have had little difficulty in defeating
chess grand masters. Therefore chess engines are a huge source for useful metrics for
this thesis. Chess engines evaluate metrics such as threats on the board, material, devel-
opment, etc. The problem of creating this soundtrack is the determination of the right

1

1. Introduction 2

set of metrics suitable for providing enough context for inexperienced players, yet not
overcomplicate the sounds by utilizing too complex metrics that are not comprehensible.

For this reason this thesis aims to analyze chess, evaluate the metrics suitable for
controlling music and develop an audio component that can play an adaptive soundtrack
based on chess game data sets. The soundtrack should accompany chess games which
can range from relaxing to alerting sounds. This emphasizes the situation in which the
players are.

1.3 Document Structure
Chapter 2 explains the necessary concepts and principles utilized in the thesis. These
principles include attacks, guards, threats, exchanges, pins, blunders, etc. After the
explanation of those principles, an overview of the development of artificial chess players
is provided, ranging from the mechanical Turk to modern chess engines such as lz0.
Apart from the historical overview, a detailed view on the concepts and algorithms
behind chess engines is presented. Additionally, it provides a description of the chess
engine utilized in the thesis project.

Chapter 3 switches from the context of chess to audio synthesis. The chapter presents
the state of the art of audio synthesis, explains why FMOD was chosen as the audio
framework utilized in the project and provides a detailed description of FMOD’s func-
tionality. After that, related works are presented, such as John Cage’s Reunion as well
as diverse follow up projects, i.e., Reunion2012 and Music for 32 Chess Pieces. These
projects all use a chessboard to control the generation of sounds or music.

After Chapter 2 and Chapter 3 provide the necessary background information on
the topic at hand, Chapter 4 proceeds to explain the concept for a data-driven sound-
track. The chapter explains the requirements the implementation needs to meet, as well
as possible limitations. Finally, two different soundtrack designs are presented, the first
using music tracks and the second utilizing basic music notes to create a subtle sound-
scape. Each of those sound designs explains the soundtracks structure, chess inputs as
well as audio outputs.

Chapter 5 describes the architecture and concrete implementation of the second
soundtrack design from every angle. It provides details on the chess analysis, the sound
design created in FMOD and the program consuming both an analyzed chess game and
the FMOD soundtrack to control it via the game’s data.

Chapter 6 proceeds to evaluate the sound design and implementation by conducting
a heuristic evaluation and a concrete chess metrics evaluation. The heuristic evalua-
tion utilized the knowledge of three experienced but amateur chess players to discover
problems within the soundtrack’s implementation. The evaluators provided substantial
feedback, proving the soundtracks concept while expressing its potential for improve-
ments. The metric evaluation focuses on the visualization of chess metrics and providing
information for how and when to use the analyzed metrics.

Chapter 7 concludes the thesis elaborating the evaluations findings as well as fu-
ture works similar to John Cage’s Reunion with the extension of providing context for
inexperienced players. Lastly, a conclusion is drawn over the thesis.

Chapter 2

Chess

This chapter starts by explaining the most important principles and factors of chess for
this thesis. A number of moves are explained which should enable the reader to grasp the
ideas and concepts discussed in later chapters. After the introduction to the game itself,
a historic overview of chess programs and engines is illustrated. This overview contains
the major milestones in pursuing the creation of an artificial chess player. The chapter
goes on to describe principles and concepts for modern chess engines, the open-source
engine Stockfish and standards for chess programming.

2.1 Principles and Metrics
In this section general ideas and principles are discussed that are important for later
sections in the thesis. The most basic rules of chess are omitted, as most readers will be
familiar with the pieces, their basic movement and captures.

2.1.1 Move
A half-move or ply is the movement of a chess piece on the chessboard by a player. A
full-move incorporates two plies, including a white ply and a black ply. After a full-move
it is the white player’s turn again. Throughout this thesis, a half-move is called ply and
a full-move simply move.

2.1.2 Attacks
An attack [4, p. 324] is a move which can capture an opponent’s piece. Often an attack
forces the opponent to react and defend the piece. In Figure 2.1 (b) the white knight
on c3 attacks the pawn at d5.

Threats

A threat is an advantageous move that would be played if it were not the opponent’s
turn, or rather will be played if the move is not prevented beforehand [4, p. 346]. Mostly,
this includes possible captures that are either undefended or a higher valued piece than
the attacker [42]. A threat is an attack, but an attack is not necessarily a threat, as this

3

2. Chess 4

depends on the involved pieces’ values. In chess, the players try to build up threats, as
they can gain material and therefore a significant advantage. A threat can be countered
by either moving the threatened piece to a safe square, moving a less valuable piece to
block the threat, capturing the attacker, or defending the piece when the piece’s value
is lower or equal the attacking piece’s value. For example on Figure 2.1 (a) the white
pawn on e4 threatens to capture the more valuable black knight on d5.

Attacker

An attacker or attacking piece attacks one or multiple of the opponent’s pieces. Attackers
are shown on Figure 2.1 (a) on squares c3, d5, and e4.

Defense

Defense [4, p. 327] is a response or parry to an attack. It tries to either prevent an
attack to be converted to a capture by attacking the attacker or capture the attacker
in the following move after the capture took place.

Guard

A guard or guarding piece protects another of its own pieces by being able to move
to the pieces square after it was captured by the opponent and in turn capturing the
attacker. Guards are illustrated on Figure 2.1 (a) in which the black queen protects the
knight on d5, but is rather inadequate as a recapture of a pawn would not compensate
the loss of a knight. The white bishop on d2 protects both the rook on c1 and the queen
on f4 in Figure 2.1 (d).

Undefended Piece

An undefended or hanging piece [4, p. 333] is a piece or pawn that is not guarded by
another piece. These pieces are open to attacks and material can be lost easily. The
white queen on c3 in Figure 2.1 (c) is neither threatened nor protected from other
pieces and therefore undefended.

Exchange

An exchange [4, p. 331] is a two ply sequence that involves capturing an opponent’s
piece, while knowing the opponent will recapture. An exchange often times involves
two pieces of equal value being exchanged, i.e., a white queen captures a guarded black
queen and the guarded piece recaptures the white queen. The result is the removal of
two equally valued pieces from the chessboard. An exchange can be won by capturing a
higher valued piece, while giving up a lower valued piece. Figure 2.1 (a) shows an initial
position for an exchange to take place. The black knight captures the white knight
(6...Nxc3) and the white pawn on b2 completes the exchange by capturing the black
knight on c3 (7.bxc3). Thus, both players removed a knight from the board in two
plies.

2. Chess 5

Pin

A pin [4, p. 338] is an attack made by a sliding piece—queen, rook, or bishop—targeting
an opponent’s piece. But moving the attacked piece may be ill-advised, as it would reveal
a more valuable piece to the attacker. An absolute pin occurs, if a king is concealed by an
attacked piece, the attacked piece must not move, as moving the king into check is illegal.
A relative pin involves a piece more valuable than the attacked piece. Figure 2.1 (b)
display both a relative and absolute pin from white. The bishop on a6 pins the pawn on
b7. Moving the pawn would threaten the rook on c8. The white queen on a4 imposes
an absolute pin on the black knight on c6. The black knight must not be moved as it
would reveal the black king to the white queen, which is illegal.

Skewer

A skewer [4, p. 343] is an attack along a line made by a sliding piece. It involves
two valuable pieces. Moving the attacked piece to a safe square, would open the other
valuable piece to the attack. In Figure 2.1 (c) an absolute skewer from the white bishop
on e5 to the black king on f6 is created. The black king has to move either by capturing
the white bishop or moving to a safe square and in turn reveal the queen to the bishop.

Fork

A fork [4, p. 332] is an attack by a piece attacking two or more of the opponent’s pieces
simultaneously. The defender has to chose which piece is more valuable and save it. It
is not possible to save both pieces as only one can be moved, except when the forking
piece can be captured. In Figure 2.1 (d) the black knight on d3 attacks the white rook
on c3 and the white queen on f4 simultaneously.

2.1.3 Castling
Castling [4, p. 326] is a move in which a king and a rook essentially switch places. The
move serves to move the king away from the center and enables the rook to be involved
in the game.

2.1.4 Blunder
A blunder [4, p. 325] is a move which worsens your situation significantly. It eliminates
your advantage or turns a good position in the game into a lost position.

2.1.5 Material
Material [4, p. 335] compares the number and values of pawns and pieces for both
players on the chessboard. If the two players have the exact same pawns and pieces on
the board, they have the same material. A material advantage is defined by having more
pieces or more valuable pieces than the other player on the board.

2. Chess 6

a

a

b

b

c

c

d

d

e

e

f

f

g

g

h

h
1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8
a

a

b

b

c

c

d

d

e

e

f

f

g

g

h

h
1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

(a) (b)
a

a

b

b

c

c

d

d

e

e

f

f

g

g

h

h
1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8
a

a

b

b

c

c

d

d

e

e

f

f

g

g

h

h
1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

(c) (d)

Figure 2.1: (a) Exchange of Knights at move 6...Nxc3, 7.Bxc3, Kramnik vs Leko 2001,
(b) Relative and absolute pin at move 13.Bxa6, Kramnik vs Anand, 2007, (c) Absolute
skewer at move 51.Be5+, Short vs Vaganian, 1989, (d) Fork at move 34...Nd3, Tissir vs
Dreev, 2007.

2.1.6 Mobility
Mobility [4, p. 336] is often defined as the number of possible moves a player has at
hand. It describes the rate of pieces moving freely on the chessboard. The higher the
number the better.

2.1.7 Initiative
Initiative [4, p. 334] is the ability to develop or having already established threats on the
board. Thus, creating a situation in which the opponent cannot create threats as they

2. Chess 7

have to react to threats. At the beginning of the game the white player has initiative,
as white moves first. While developing pieces, white has the advantage of positioning
its pieces first and creating the threats black has to defend [5, p. 25].

2.1.8 Pawn Structure
The pawn structure [4, p. 336] consists of the various positions of pawns on the chess-
board. It defines a player’s territory. An effective pawn structure has the ability to
protect and guard other pieces, as well as allow pieces to move past it. It also holds the
opponent’s pieces at bay, as the pawns attack key squares on the board.

2.1.9 Passed Pawn
A passed pawn [4, p. 337] has either no opponent’s pawn in front of it or non of the
opponent’s pawns is able to capture the pawn. A passed pawn can move towards the
end of the chessboard to be promoted. A passed pawn is an advantage in the end game,
as it can lead to an decisive advantage.

2.1.10 Development
Pieces are developed when they are moved to their most advantageous position and
therefore can unfold their potential [4, p. 327]. Important actions in development are
moving bishops, knights and the queen from their starting position, castling and con-
necting the two rooks together. When a player is ahead in development this player can
try to use this advantage and attack the opponent.

2.1.11 Imbalances
Imbalances [29, pp. 3–28] are a significant difference in two respective positions. Two
similar positions are compared to each other and it is determined whether a player has
an upper hand on a specific criterion. The criteria can include: superior minor piece,
pawn structure, space, material, control of a key file, control of a hole/weak square, lead
in development, initiative, king safety, etc.

2.1.12 Phases of Chess
Chess can be divided into three phases, opening, middle game and end game. The bound-
aries between the phases are not set in stone, as chess is highly versatile. Nevertheless,
the following definitions try to make the roles of the phases clear.

Opening

The opening [23, pp. 135–141] is the initial phase in which the players try to bring the
more valuable pieces into play. This also requires the pawns to move to make way for
the pieces to move past them. Often times pawns are developed towards the center to
have influence on important center squares. The king should be castled either kingside
or queenside for protection. The castling enable the rooks to be connected and in the

2. Chess 8

center. Standard openings can help the players to accelerate the opening phase. After
the development of pieces has more or less been completed, the middle game starts.

Middle Game

The middle game [23, pp. 142–152] follows the opening. Most pieces have been developed
and maybe few captures have taken place. In this phase the players devote their con-
centration on to creating threats, counterattacks, and the objective of gaining material.
The players should follow a plan and work on its implementation. Occupying crucial
squares or files is important to impose threats. On top of that the players should not
disregard the safety of their kings. Hiding them behind pawns and defending possible
threats is important for the king safety. In contrast to the opening, the middle game
does not offer clear guidelines and requires the skill and creativity from the players to
defend their pieces, while gaining material.

End Game

After most pieces on the board have been exchanged, the end game [23, pp. 152–156]
starts. Typically, the chessboard hosts a small number of pawns, one or two pieces—such
as a rook, or a bishop—and the king. In the end game players often try to promote a
pawn to a queen to gain a decisive advantage. The king was previously heavily guarded
and hidden behind their own line of pawns, and now is encouraged to move around
the board. The king can escape enemy attacks or prevent passed pawns from being
promoted. The game ends when the king cannot avoid being checkmated or a draw or
stalemate occurs.

2.2 Chess Engines Overview
In this section the historic timeline of creating an artificial chess player and program is
explored. This includes the major milestones and advances made in that area since the
inception of the Turk in year the 1770.

2.2.1 First Mechanical Chess Players
The idea of a machine capable of playing and winning chess against humans first man-
ifested itself in 1770. Wolfgang von Kempelen constructed a chess player called the
Turk [7, pp. 154–163]. The Turk consists of a cabinet housing a complex mechanism,
a chessboard fixed onto the surface of the cabinet and a full scale model of the Turk
itself with a torso, a nodding head, moving arms and a smoking pipe, as seen in Fig-
ure 2.2 (a). Before the Turk starts playing against a visitor, the exhibitor opens every
door and drawer to reveal gearwheels, barrels and pulleys to the audience. Except for a
space large enough to fit a fully-grown adult, the operator, into the machine. The opera-
tor sits on a sliding seat and by moving the seat forward a set of dummy machinery folds
down concealing the operator [31, Ch. 11]. The operators needs to conceal themselves
in a similar fashion until every door of the cabinet is opened. After the initial inspection
by the audience, the operator assumes an upright position and the game begins. The
operator uses a second chessboard to keep record of the game and a series of levers to

2. Chess 9

(a) (b)

Figure 2.2: (a) The Turk: Copper engraving depicting the Turk’s front side showing its
interior. [40], 1783, (b) El Ajedrecista: face of automatic chess player [32].

control the Turk’s arm to pick pieces and make moves. The magnets on the underside
of the exterior chessboard signal to the operator which piece was moved. Writer Edgar
Allen Poe [25], mechanical engineer Robert Willis [36] and Joseph F. von Racknitz [27]
to name a few who attempted to uncover the secrets behind the Turk, all suspected a
hidden human chess player, but made wrong assumptions regarding the mechanics. The
inner workings of the Turk were revealed by Silar W. Mitchell [16], son of the Turk’s
last owner, after the device was lost in a fire in 1854. The Turk was the first attempt at
creating an artificial chess player. Ultimately a failed attempt as it required a human
chess player to make its moves.

The significant development happened in 1914, when Leonardo Torres y Quevedo
accomplished a more authentic approach to the mechanic chess player. The machine
called El Ajedrecista, which translates to English as The Chess Player, is depicted in
Figure 2.2 (b). Torres constructed a real machine capable of checkmating a black king—
the black king played by the human spectator—by only using a white rook and white
king [32]. A double slide mechanism can move chess pieces to any square by clamping
the pieces. When the black king is moved, the machine first checks the legality of the
move. The machine signals an illegal move by turning up a light bulb. After a legal
move by the spectator, the machine determines a move and moves either rook or king
by one square. This procedure is repeated until the black king is checkmate. While the
machine by Torres y Quevedo accomplished solving a particular end game scenario, it
was not a complete chess player.

2. Chess 10

2.2.2 Shannon’s Chess Engine Definition
In 1950 mathematician and engineer Claude E. Shannon described a routine for general
purpose computers capable of playing a tolerable good chess game [28]. Shannon suggests
an evaluation function 𝑓(𝑃) evaluating a position 𝑃 to determine a won, drawn or lost
position. Theoretically a machine could evaluate every possible move for a position and
then every move by the opponent and so on. Creating a move tree that ends in every
variation possible. By looking at the end results and step back to the current position,
it is possible to determine if the position is a win, draw, or loss. Hence, making it a
perfect chess player. But as Shannon also remarks, a position offers on average 30 legal
moves. A full move consists of 103 possible moves. By assuming a conservative average
game length of 40 moves, the move tree would have 10120 variations to calculate, making
this endeavor quite impossible as to calculate the first move in the game can take 1090

years, using a machine which calculates one variation per micro-microsecond.
An evaluation function 𝑓(𝑃) is an approximation and cannot be complete, as it is

based on generalizations of certain principles from empirical data. The suggested princi-
ples include the number and kind of black and white pieces (material), pawn structure,
mobility, etc. These heuristics are then determined for both players and subtracted.
Consequently, a positive evaluation is an advantage for the white player and a negative
one is an advantage for the black player. The more the evaluation deviates from 0 the
greater the advantage for a player. The evaluation function should only be applied to
relatively quiescent positions as evaluating a position where a Queen captured another
defended Queen makes little sense, when the remaining Queen will be captured in the
counter move and therefore completing the exchange.

Furthermore, a chess program should be able to determine the player’s next best
move. Not only by applying the evaluation function to the current possible moves and
select the best one, but to look ahead in a tree of moves with a computable move depth.
Generally, the white player tries to maximize and the black player tries to minimize the
evaluation function to determine the best possible move. This results in a procedure of
analyzing maximizing every white move and minimizing every black move within the
search tree, alternating the two functions for every step. Every variation in this tree is
completely evaluated and the variation best for the respective player is chosen. Then
the program steps back from the end result to the next playable move and plays it. This
leads to playing the best evaluated move by a certain depth and not the best immediate
move which loses its advantage in the long term. Figure 2.3 (a) is a simple depiction
of the search tree process. If white chooses the upper branch, black can minimize the
evaluation to +0.1. For the second move it is −7 and the third one −6. White maximizes
and therefore chooses the upper branch for its best option. As remarked before, the
search tree grows exponentially for every additional move. Therefore Shannon suggests
another strategy to only evaluate moves which seem promising. These moves can be
selected by heuristics, but determining the right heuristics is a difficult process. He
names the former procedure type-A and the latter one type-B.

The theoretical paper describes a chessboard representation as an eight by eight
square list. The squares can be numbered according to Figure 2.3 (b). The squares can
take a state between −6 to +6. Each piece is a number within that range, negative for
black, positive for white and 0 is an empty square. The number 𝜆 is +1 or −1 indicates

2. Chess 11

(a) (b)

Figure 2.3: (a) A tree of moves. The first three branches are white moves, the following
are black moves [28]. (b) Board representation used by a computer program [28].

White’s or Black’s turn, respectively. A move is represented by two squares, the original
and the final square of the moving piece. A third indicator is added in case of pawn
promotion. Hence, the move consists of (𝑎, 𝑏, 𝑐). 𝑎 and 𝑏 are squares and 𝑐 the promotion.

The principles of evaluation functions, search trees and board representations in-
troduced by Shannon still hold up to modern chess engine standards, even though the
implementations have drastically improved over the following decades.

2.2.3 Chess Engines Pursuit to Gain Strength
After decades of further advancing algorithms and evaluation functions for chess pro-
grams led to the inception of chess programs such as Kaissa or Chess in the 1970s. These
programs ran on supercomputers and were able to compete in computer chess tourna-
ments, but not on a grand master level. Nevertheless, in 1997 the ultimate breakthrough
for computer chess occurred when the chess computer Deep Blue [14] defeated the—
at the time undisputed—russian grand master Garry Kasparov. Significant advances
in computing power, as well as improved implementations of Shannon’s approach to
solving computer chess, enabled this milestone.

Since then chess engines—as envisioned by Shannon—asserted their strength and
can compete on human grand master level. Notable examples are the open-source engine
Stockfish1 which is currently one of the world’s strongest traditional chess engines, the
commercial chess engine Kommodo2 and Houdini3—also being commercial, etc. These
three engines have similar strengths but vary in their implementation, e.g., Stockfish
relying on search depth and Kommodo on a more advanced evaluation function.

In 2017 the DeepMind team devised a completely new approach for a computer chess
program. AlphaZero [30] uses reinforcement learning from chess games as well as self-

1https://stockfishchess.org/
2https://komodochess.com/
3http://www.cruxis.com/chess/houdini.htm

https://stockfishchess.org/
https://komodochess.com/
http://www.cruxis.com/chess/houdini.htm

2. Chess 12

play. It completely refrains from using heuristics and finely tuned weights—as utilized
by traditional chess engines—and only provides the program with the necessary rule
set for chess. The deep neural network used in AlphaZero learns move probabilities by
self play and utilizes them for its search. Instead of using the alpha-beta search used in
traditional chess engines, it works with a Monte Carlo tree search (MCTS) to devise the
next move. This new approach led to the defeat of Stockfish, validating this new method
as a very potent chess program. The open-source chess engine Leela Chess Zero4 (lc0)
is based on the works of AlphaZero and has a comparable strength to Stockfish.

2.3 Chess Engine Principles
The following algorithms and principles are commonly used in traditional chess engines.
Every chess engine has its own implementations and variations of these concepts, but
the described principles are utilized in almost every major chess engine, apart from
engines based on neural networks.

2.3.1 Board Representation
The array of squares board representation suggested by Shannon—as described in Sec-
tion 2.2.2—has the advantage of being very light on memory usage. Nevertheless, the
concrete implementation of an eight by eight array was never used as a ten by twelve
array solved the problems of knights moving out of bounds [11]. Each element in the
array represents a square on the board or the squares off limits. These squares each hold
a designated value for a white or black piece.

Another approach is the usage of bitboards. A bitboard consists of multiple 64 bit
words—each representing a piece type [1, Ch. 3]. A single square is assigned to one bit
in a 64 bit long word, thus storing all 64 squares of a chessboard. A word is meant
for a concrete piece type, such as white pawns, black pawns, white bishop, etc. Setting
a bit to 1 means that the square is occupied by the piece type specified by the word
and 0 if that piece type is not situated on that particular square. Therefore, a bitboard
consists of at least twelve words, one word for each piece type and their respective
color. Additional words can be defined such as all white pieces and all black pieces. The
advantage compared to Shannon’s approach is the low count of instructions needed to
compute complex situations. This is accomplished by Boolean operations such as logical
and, logical or or not on the bit maps [11, Ch. 3]. To compute the possible captures
for a white knight, a bitmap containing every position the knight on that particular
square could move to is fetched. Secondly, a bitmap containing all white piece positions
is retrieved and negates that map, so that when both maps are combined with an and
instruction, only the squares remain which the white knight could move to. To finally
calculate the possible captures, a bitmap for all black pieces is fetched and the two
bitmaps are combined with an and instruction, resulting in a bitmap containing all
possible captures for the particular white knight. The operations required three fetches
from memory, one not and two and instructions.

Bitboards require more memory than the square array, but compute complex oper-
ations using fewer instructions, thus improving the performance of chess engines.

4https://lczero.org/

https://lczero.org/

2. Chess 13

2.3.2 Static Evaluation Function
An evaluation function [11] is used in a look-ahead procedure to determine a variations
worth and subsequently choose the next best move. The evaluation function is mostly
applied in quiescent positions, meaning the position is relatively stable and exchanges
have been completed. The evaluation itself is a comparison of a multitude of factors
between the black and white players. Each factor influences the evaluation’s accuracy,
as well as its performance. Chess engines either have a simple and fast evaluation to
facilitate a deep look-ahead search or a complex evaluation and a shallow search. Both—
the evaluation function and look-ahead procedure—have to be in a delicate balance to
create a well performing chess engine. Over the last decades a long list of suitable factors
for chess engines has accumulated. These factors are e.g., material balance, mobility,
pawn structure, control of center squares, king safety, passed pawns, rooks on open
files, pins [11, 13, 28]. Chess engines can solely rely on a fast material balance check or
incorporate as many factors as possible. These factors have different implementations
and weights associated with them, as the implementations rely on assertions.

2.3.3 Look-Ahead Procedure
The next best move to make can be determined by evaluating every move to a defined
depth, as described in Section 2.2.2. This creates a tree composed of moves and every
level alternating between white and black moves. At each node the algorithm chooses
the best move for the moving player by applying an evaluation function. An advantage
for the white player can be defined to be a large number and a low number for a black
player’s advantage. Consequently, a white player’s move needs to be maximized and
a black player’s move minimized. This leads the algorithm to alternate maximize and
minimize for every node it traverses deeper into the tree, which is why the algorithm is
called minimax [11]. For example for a white move with a four ply deep analysis the top
down order would be maximize, minimize, maximize, minimize. There are two different
approaches to traversing the tree: depth-first and breadth-first. The former explores
a branch to is lowest node, before moving to the next one. The latter approach first
explores every node on the first level, before moving to the second and then third level,
etc. Normally a depth-first approach is chosen.

Figure 2.4 demonstrates a possible game tree four plies deep. Normally, a node would
have around 30 moves available, but this example uses one to three sub-nodes. White
moves are symbolized as squares and black moves are circles. First the tree is traversed
down to the lowest level following the path of the following nodes: 1, 2, 3, 4. Node 5 and
6 have an evaluation of both +1. To select which move is best suitable both nodes are
compared. As Node 4 is a black move it tries to minimize the evaluation, resulting in
+1. Next up is node 7 where 0 and +3 are minimized, choosing node 8. The comparison
between node 4 and 7 is maximized as node 3 is a white move. White chooses node 4 as
it yields the higher evaluation of +1. This procedure is strictly followed until every node
is evaluated and compared to each other from the bottom up and one move remains.
In the end node 1 maximizes node 2 and 22 with the values +1 and −4, thus choosing
node 2. The next move is P-K4 (d4 in SAN notation).

As Shannon [28] mentioned, the growth of the tree is exponential and therefore
cannot be completely evaluated. An optimization is needed to evaluate a tree to a

2. Chess 14

Figure 2.4: Sample game tree for the opening position in chess [11].

certain depth, which yields appropriate results. 𝛼-𝛽 pruning offers a solution to this
problem. 𝛼 as minimum value for the maximizing player and 𝛽 as maximum value for
the minimizing player. Following the example of Figure 2.4 we evaluate the tree depth-
first. By first looking at node 5, 6 and then minimizing at node 4 we get again an
evaluation of +1. Then proceeding to node 8 we get a 0 evaluation. The evaluation of
node 9 is not required, as node 3 maximizes and it chooses node 4 over node 7, because
it has the higher evaluation. This is because node 7 minimizes and chooses at least
an evaluation that is lower than +1 and node 3 maximizes therefore choosing node 4.
Hence, it is possible to stop evaluating the hole tree and prune branches, while not
altering the result of the procedure. In a real scenario with 30 possible moves at every
node huge parts of the tree do not need to be evaluated, therefore enabling a deeper
search.

2.3.4 Opening Book
Chess openings constitute a problem for chess engines, as pieces have not been removed
from the game and are far from being removed any time soon. This initial phase spans a
very broad and deep search tree. The program has to make immense efforts to compute
good moves. To avoid this a database of standard positions is composed and evaluated.
The chess engine can rely on these positions and immediately respond with a suitable
next move. The problem of the approach is that a chess game eventually deviates from
the positions stored in the opening book. Thus, the chess engine falls back to its look-
ahead search. Often times this switch makes the engine perform worse for a couple of
moves, as the opening book and the evaluation function favour different factors. The
chess engine then adjusts the pieces to match its play style and consequently losing
tempo or advantages. This problem can be countered by constructing an opening book

2. Chess 15

matching the engine’s style.

2.3.5 End Game
Applying minimax search onto end games seems inadequate as the moves required to
win a game are very specific and may require a plan of 20 moves to accomplish a
win. To mitigate this problem, end games can be precalculated and stored up to a
certain number of remaining pieces on the chessboard. An end game tablebase [2, 56]
is generated by backward analyzing the search tree from a checkmating position. Then
these end game positions can be searched within a tablebase to retrieve the best move,
without searching for it.

2.4 Stockfish

Stockfish5 [41] is an open-source engine in the traditional sense, which is a fork of the
chess engine Glaurung. 6 Stockfish introduced significant improvements to Glaurung,
which led to combining forces of Romstad and Costalba by solely focusing on the de-
velopment of Stockfish. Currently, Stockfish is one of the strongest traditional chess en-
gines [43]. It relies on the principles discussed in Section 2.3, but their implementations
are more advanced. The chessboard is represented by utilizing bitboards. Its evaluation
function includes factors such as material, imbalances, mobility, threats, passed pawns,
space control, initiative, king safety, etc. The search uses a minmax procedure with 𝛼-𝛽
pruning and other optimizations. The engine is written in C++, which makes it run on
a broad range of operating systems, e.g., Windows, Linux, macOS. Stockfish supports
the UCI protocol, which enables the communication between chess engines and chess
user interfaces. The advanced evaluation and search, as well as recognition for being
one of the strongest chess engines available, make Stockfish a well suited pick for being
utilized in the master thesis.

2.5 Universal Chess Interface

The Universal Chess Interface [54] (UCI) was developed in 2004 to enable communica-
tions between chess engines and graphical user interfaces (GUI). GUIs can send individ-
ual moves in LAN or FEN notation. User interfaces can define a maximum threshold for
the move calculation, e.g. depth in plies, move time, number of nodes, mate in a number
of moves. After the move calculation the engine sends back the calculated next move, the
evaluated score, the explored depth, time needed, nodes traversed, etc. UCI is broadly
adopted by most chess engines, as it makes GUIs and chess engines interchangeable and
not dependent on each other.

5https://stockfishchess.org/
6Glaurung was created by Tord Romstad in 2004 and Marco Costalba forked Glaurung 2.1 to create

Stockfish.

https://stockfishchess.org/

2. Chess 16

2.6 Chess Notations

The Standard Algebraic Notation [45] (SAN) is used to describe the moves in a chess
game. The rows, called ranks, are numbered from 1 to 8 and the columns, called files,
are labeled from a to h. A move consists of a move number, which is only incremented
when both white and black have taken their turn, the two half moves for white and
black, which in turn are comprised of a letter for the piece moved and a destination
square. The piece letters are K for king, Q for queen, R for rook, B for bishop and N for
knight. The pawn is not a piece and therefore does not does not have its own letter.
When a pawn is moved the letter is just omitted. For example the first move for white
and black could look like this: 1. Nc3 f5. The moves mean that white has moved their
knight from b2 to c3 and black has moved their pawn from f7 to f5. A capture is
indicated using an x, i.e., Nxc3—knight captures a piece or pawn on the square c3.
Promotion of pawns appends the letter of the piece the pawn is promoted to, i.e., d8Q.
Kingside castling and queenside castling are indicated as 0-0 and 0-0-0, respectively.
Checks add + and checkmates ++ or # at the end of a move. An extended notation to
SAN is the Long Algebraik Notation (LAN). It adds the origin square to the notation,
i.e., Nb2-c3.

An alternative to SAN is the Forsyth-Edwards Notation [53] (FEN). In contrast to
SAN’s minimal notation, FEN represents the whole chess board using a line of text.
The lettering for the pieces is almost the same, with the difference of pawns written
as P. White pawns as uppercase and black pawns as lowercase letters. A rank on the
chessboard consists of eight letters with the exception that consecutive empty squares
are written as a number. Ranks are separated using a / symbol. This notation can be
processed easily as a move always stores the whole board. An example of FEN is:

rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1.

The FEN notation is easy to use to define positions other than the standard position.
The Universal Chess Interface (UCI) protocol uses yet another version of LAN.

It refrains from using letters for pieces and just uses the their origin and destination
squares. An example e2e4. UCI is described in Section 2.5.

The Portable Game Notation [53] (PGN) is used for computer programs to process
and record chess games. It uses SAN to describe the moves. Most chess games are
available in the PGN format. Making it very useful when working with chess game
data. Program 2.1 shows a chess game in the PGN format.

2.7 Centipawn
Pawns are a unit of relative value of pieces to the pawn. Pawns can express an advantage
of a player over the other player. To calculate an advantage, the pieces have been as-
signed to de facto standard values, even though countless derivations emerged over time.
The values for queen, rook, bishop, knight and pawn are 9, 5, 3, 3, 1, respectively [28].
Modern chess engines make use of Centipawn—1/100 of a pawn. This allows a more
granular evaluation by the engines.

2. Chess 17

Program 2.1: Bobby Fischer and Boris Spassky draw in round 29 of their match in
1992 [53].

[Event "F/S Return Match"]
[Site "Belgrade, Serbia JUG"]
[Date "1992.11.04"]
[Round "29"]
[White "Fischer, Robert J."]
[Black "Spassky, Boris V."]
[Result "1/2-1/2"]

1. e4 e5 2. Nf3 Nc6 3. Bb5 a6 4. Ba4 Nf6 5. O-O Be7
6. Re1 b5 7. Bb3 d6 8. c3 O-O 9. h3 Nb8 10. d4 Nbd7
11. c4 c6 12. cxb5 axb5 13. Nc3 Bb7 14. Bg5 b4 15. Nb1 h6
16. Bh4 c5 17. dxe5 Nxe4 18. Bxe7 Qxe7 19. exd6 Qf6 20. Nbd2 Nxd6
21. Nc4 Nxc4 22. Bxc4 Nb6 23. Ne5 Rae8 24. Bxf7+ Rxf7 25. Nxf7 Rxe1+
26. Qxe1 Kxf7 27. Qe3 Qg5 28. Qxg5 hxg5 29. b3 Ke6 30. a3 Kd6
31. axb4 cxb4 32. Ra5 Nd5 33. f3 Bc8 34. Kf2 Bf5 35. Ra7 g6
36. Ra6+ Kc5 37. Ke1 Nf4 38. g3 Nxh3 39. Kd2 Kb5 40. Rd6 Kc5
41. Ra6 Nf2 42. g4 Bd3 43. Re6 1/2-1/2

2.8 Score
Apart from the determined next move, a chess engine such as Stockfish returns a score
after the evaluation was completed. The score usually expresses an advantage of a player
in Centipawn. A positive score evaluation is usually an advantage for the white player—
a negative evaluation for black. For example a +300 centipawn score is an advantage of
a bishop or three pawns for the white player.

2.9 Elo Rating

The Elo rating [4, pp. 329–330]—named after its inventor Arpad Elo—is a system to
determine a player’s skill level, based on the games they played to date. The rating itself
is numerical. It gives more recent matches more weight in the calculation. Two players
with the same rating are expected to score equal wins and losses. The chance of scoring
against another player is computed by the difference of the two ratings.

2.10 Summary
The chess principles described do not represent a complete picture of the tactics, strate-
gies and move principles involved, but rather give the reader the essential understanding
of those principles used in later chapters, such as Chapter 4. The historic overview of
chess engines highlights the most significant developments in the pursuit of creating an
artificial chess player, which is capable of having a human-like behaviour. The theo-
retical paper written by Shannon already depicts the principles used in today’s chess
engines, although more than 40 years should pass before Deep Blue is able to defeat
the world champion. Shannon among many others clearly demonstrates the effort and

2. Chess 18

foresight that was put into finding the right algorithms, well before the necessary pro-
cessing power was available. Surely, those algorithms have been advanced significantly
and are far more capable than before, but those principles still hold true. The chess
engine’s principles, Stockfish, UCI, SAN, centipawn, score and Elo rating are utilized in
the later chapters. Next, Chapter 3 presents basics for adaptive soundtracks, which are
the other major topic area for this thesis.

Chapter 3

Adaptive Soundtracks

Adaptive soundtracks are continuous audio streams manipulated by human interaction
or their reaction to the environment, e.g., a video game’s soundtrack reacts to a player’s
actions, a real time composition of music while performing it simultaneously, a sonifica-
tion of data as the input changes over time. The underlying principle of adaptive audio
is to generate music or sounds by adapting and reflecting on their inputs. This chapter
explores the state of the art for audio programming languages and audio tools usable
for audio synthesis, a number of approaches to compose music for the audio synthesis,
as well as projects that utilize these approaches for audio synthesis. At the end of the
chapter the related work—which also serves as inspiration—for the thesis is discussed.
Reunion by John Cage can be highlighted as it is one of the first music performances
that try to make a chess game sound.

3.1 Audio Programming Languages

Since the development of Music I [17]—one of the first programming languages for
computer music—in 1957, it and its successors have laid the foundation for decades of
research in audio synthesis. The open-source audio programming language Csound1 [57,
62] is a direct descendent of the Music N program family. Csound uses unit gener-
ators [17], also called opcodes, which are the fundamental building blocks for audio
synthesis, to generate sounds. Basic unit generators include oscillator, add, multiply
and output [17]. The oscillator is the basic element for creating sounds. Oscillators con-
sist of three inputs: the stored function, amplitude and frequency. The stored function
defines the waveform. The amplitude controls the loudness of the sound. The frequency
sets the pitch of the sound. Combining these three inputs creates a sound with a spe-
cific loudness, pitch and texture. Add and multiply combine two inputs by adding and
multiplying inputs, respectively. Output unit generators are used to send the resulting
signal through a digital to analog converter to speakers. These and other unit generators
make it possible to create sound effects such as chorus, reverb, vibrato, etc [57]. Thus,
enabling the user to depict real world sounds, such as instruments or synthesize new
sounds completely averted from the real world. Csound splits a program into two parts:
an orchestra and a score [57]. An orchestra includes all instruments needed for the mu-

1https://csound.com/

19

https://csound.com/

3. Adaptive Soundtracks 20

sic. The instruments are created by defining, modifying and combining unit generators
to achieve the desired sound. The instruments can subsequently be utilized in a score
to create the actual music. The score depicts the actual written notes and rhythms to
create melodies and a music piece as a whole. After over 30 years of active development,
the language is primarily used in a real-time context, although it was not intended for
that. Csound is written in C, nevertheless, its API supports a number of programming
languages such as Python and Java [57]. Many of the later developed audio programming
languages utilize the principles that originated in the Music N program family.

RTcmix2 [55] is an open-source real-time digital signal processing and synthesis
language, written in C/C++. Heavily inspired by Music N programs, RTcmix utilizes
similar concepts such as, unit generators, instruments and scores. RTcmix uses a C -like
syntax to enable the usage of conditional statements and loops. The language can also
be used in Perl or Python.

Contrary to Csound, the functional programming language Nyquist3 [10] refrains
from the use of the orchestra and score concept. Nyquist combines both into one system.
Consequently, Nyquist programs are flexible and easy to use. Nyquist programs can be
adapted on-the-fly, which makes them interactive for the user.

SuperCollider4 [18] is an open-source object-oriented language similar to Smalltalk.
It lends concepts such as unit generators from Music N programs. SuperCollider is de-
signed to be used for live improvisations and as a result of this intention it excludes the
orchestra and score concept in exchange for improved flexibility. The synthesis engine
of SuperCollider is a server that runs independently from the SuperCollider program-
ming language. Both components communicate using the Open Sound Control (OSC)
protocol [49]. Hence, the SuperCollider server can be controlled by any program.

ChucK 5 [34, 35] is an open-source concurrent audio programming language for real-
time audio synthesis, composition and performance. It can be programmed on-the-fly
similarly to Nyquist. ChucK makes use of unit generators, similar to Music N programs.
The language introduces synchronized threads, called shreds, to enable the parallel ex-
ecution of multiple programs based on a shared time.

In contrast to the previously mentioned text-based audio programming languages,
Max6 [26] is a graphical programming environment for developing real-time music soft-
ware applications. Max is intended for live performances by musicians. Therefore, its
concepts are highly abstracted. Max can be considered to be an descendent of the Music
N programs, as it defines patches that function similar to unit generators. These patches
are constructed by connecting boxes together using lines in a graphical user interface,
as opposed to lines of code in other music languages.

Open Sound Control7 [37] (OSC) is a commonly used protocol for communica-
tion from and to sound synthesizers. The following synthesizers support OSC: Csound,
RTcmix, Nyquist, SuperCollider, ChucK and Max.

2http://rtcmix.org/
3https://www.cs.cmu.edu/∼music/nyquist/
4https://supercollider.github.io/
5https://chuck.cs.princeton.edu/
6https://cycling74.com/
7http://opensoundcontrol.org/introduction-osc

http://rtcmix.org/
https://www.cs.cmu.edu/~music/nyquist/
https://supercollider.github.io/
https://chuck.cs.princeton.edu/
https://cycling74.com/
http://opensoundcontrol.org/introduction-osc

3. Adaptive Soundtracks 21

3.2 FMOD

FMOD Studio8 [47] is a commercial audio engine designed for arranging adaptive sound-
tracks mostly for video games. The soundtracks are constructed in a graphical user
interface. Compared to the previously mentioned audio programming languages in Sec-
tion 3.1, FMOD refrains from generating its own audio, but rather relies on the usage
of audio tracks. In FMOD Studio events are used to define soundtracks, a detailed
description follows. Events can be combined and built to banks, in which the sound-
track is stored as a whole. Every audio asset and every event that the—in FMOD
Studio defined—soundtrack consists of are incorporated into the bank. Banks are ex-
posed through an API to game engines such as Unity or Unreal Engine. Additionally,
FMOD provides an FMOD Studio API for triggering and manipulating the predefined
events and a FMOD Studio Low Level API for controlling simple sounds within a pro-
gramming language [46]. Both APIs—FMOD Studio API and FMOD Studio Low Level
API—can be consumed in C++ programs and work in real-time.

Events arrange audio assets in the desired configuration to create sound. These
assets can range from short samples to long and complex music tracks. Assets are
integrated into events as instruments by adding them to audio tracks. Audio tracks can
assign their output to either the master track or another audio track, which is useful
for combining multiple audio tracks to add the same behaviour and effects. The audio
tracks build the backbone to an event in FMOD, as these audio tracks are the output to
the loudspeaker. Audio tracks can be manipulated by chaining multiple effects in a row.
FMOD Studio already provides a multitude of effects, such as Chorus, Compressor,
Distortion, Delay, Gain, Multiband Equalizer, Pitch Shifter, Reverb, etc. The effects
can be automated which makes them controllable by parameters. Parameters play an
essential role to make adaptive soundtracks, as they are one of the few factors which
can be manipulated by the API. Parameters are decimal numbers that operate in a
user-defined number range. In the context of sound effects the parameters assigned to
the different effects control the effect’s extent. A two-dimensional curve is applied to
define the effect’s extent corresponding to the parameter’s value range. For example,
parameters are able to control the volume of an audio track by a parameter with a
range from 0.0 to 1.0 and a linear curve which decreases the volume as the parameter
continuously increases its value from 0.0 to 1.0. Hence, the effect would be lowering the
audio track’s volume as the parameter’s value rises.

FMOD uses a timeline to organize instruments and audio tracks in the soundtrack.
The timeline is played through using a playback position. Audio tracks can be segmented
into sections by using destination markers. A transition marker leads the playback posi-
tion to jump to a different predefined destination marker. Loop regions let the playback
position jump to the beginning of the loop region when reaching its end. Therefore,
loop regions repeat a customizable area of audio tracks. Another important usage of
parameters is the control of markers and regions on the timeline. Markers and regions
can be activated and deactivated when the applied parameters reach their predefined
value ranges. This concept is similar to conditionals in programming languages, as both
cases only arise when its criteria are met. This enables the soundtrack to jump and loop

8https://www.fmod.com/

https://www.fmod.com/

3. Adaptive Soundtracks 22

according to the parameters, which again are controllable through the API.

3.3 Choosing the Appropriate Audio Program
The extensive research behind audio synthesis over the decades led to the creation of
capable programming languages. Many of which are open-source, actively developed and
offer an API, such as Csound, RTcmix, Nyquist, SuperCollider and ChucK. Max offers
a GUI, but is closed-source and there are costs involved. RTcmix’s lack of documenta-
tion [55] makes it difficult to acquire the required knowledge. Csound, SuperCollider and
ChucK are good options as all three have real-time capabilities, are well-documented,
open-source and being further developed. On the other hand, FMOD is a commercial,
closed-source, actively developed and through an API exposable sound engine, which on
top offers a GUI. FMOD does not charge money for non-commercial projects. Due to
the fact of its relatively intuitive design approach through their user interface, the use of
pre-existing audio assets and free usage for non-commercial projects make FMOD stand
out. On top of that, FMOD allows quick prototyping of adaptive soundtrack which is
necessary for this thesis’s project as multiple sound designs are tested. Consequently,
FMOD is chosen for developing the sound component of this thesis.

3.4 Controlling Adaptive Soundtracks
In the previous sections audio programming languages and tools are explored, as well
as their techniques to create and manipulate sounds. Either the sounds are generated
by using unit generators or predefined concrete sound samples. Yet, the sounds need to
be arranged into a sequence of sounds or notes to create a musical piece. The following
paragraphs explore the different ways for music to be created:

• A score is a traditional piece of music that defines notes and rhythm to be played
throughout the piece. The notes define the pitch, loudness and length and they
can be played in a sequence or simultaneously. The notes then lead to rhythms,
chords and melodies within the musical piece.

• The broad field of algorithmic composition [22] relies on algorithms—a strict se-
quence of instructions—to generate the musical structure. The algorithm receives
a set of input values and based on those values the algorithm determines the oc-
currence of specific notes. For example algorithms can use a simple set of rules
which leads to complex sounds over time, or even imitate specific music genres. Of-
ten times algorithmic composition uses probabilities to introduce variation to the
generation process. The following list explores a number of different approaches
to algorithmic composition:

– Markov models determine the next state on the bases of their current state
and a set of probabilities. Therefore, Markov models disregard the previous
states and rely solely on the current state to calculate the next state. This
allows the imitation of musical genres, as the current note defines the next
note to be played.

– Generative grammars consists of a set of rules which generate the content

3. Adaptive Soundtracks 23

based on the rules. The grammar provides rhythmic as well as tonal struc-
tures. Generative grammars can be used to imitate specific styles of music.

– Transition networks consist of interconnected nodes. The networks can follow
a certain path within the network and jump to other sections of the network
when certain conditions are fulfilled. This leads to the creation of music
similar to that of generative grammars.

– Chaos theory describes complex systems with unpredictable or chaotic out-
come. Chaos theory introduces the usage of L-systems as well as fractals
which allows the usage of fractional noise.

– Genetic algorithms evolve over time based on specified criteria. Applied to
music composition the music changes continuously and does not stay the
same.

– Cellular automata consist of an n-dimensional grid, in which the cells can
assume a state. The cell states are defined by simple rules which alter the
cells over time. These simple rules can lead to complex compositions.

– Artificial Intelligence (AI) includes a broad field of algorithms that aims to
learn, solve problems and make decisions in a human way. Machine learning
is an approach to train models on large data sets for a very specific problem
without instructions provided on how to solve them. Machine learning is
suitable to reproduce authentic music pieces that mimic the data set it is
trained upon.

• Data-driven composition [44] uses data to control the sequence of instructions
defined in a program. The program maps sounds and effects to the corresponding
data, which is mostly structured as lines or tables. The program retrieves the data
sequentially, which creates a loop that reacts to the data accordingly. The data
adopts the role of a score and the program that of the orchestra.

• Interactive composition [6] or real-time composition utilizes a system of functions
that is altered by human interaction over time. Interactive composition either
adjusts the function parameters to influence the musical outcome [6] or funda-
mentally changes and replaces the functions by applying new algorithms or in-
struments to the synthesis as the music is performed [8]. The latter is called live
coding and enables the programmers to add, modify and remove code, while the
program is executed [8].

To demonstrate the capabilities of algorithmic, data-driven and interactive composition,
three projects utilizing those composition approaches are described.

Application to Polyphonic Music Generation and Transcription9 by Boulanger-Le-
wandowski, Bengio and Vincent creates algorithmic compositions that are capable of
generating music based on a recurring neural network (RNN) [3]. The project compares
multiple music data sets, as well as varying implementations for RNNs. The models are
trained on several music data sets, such as classical piano, folk tunes, or chorales from
Bach. The most promising models are capable of producing polyphonic music, in which
chords and complex melodies are played. The musical output is generated as a piano-roll
representation, which uses time stamps and every time stamp has a binary value for

9http://www-etud.iro.umontreal.ca/∼boulanni/icml2012

http://www-etud.iro.umontreal.ca/~boulanni/icml2012

3. Adaptive Soundtracks 24

whole note range. The result are authentic and pleasing polyphonic music sequences.
The song Two Trains10 [48] by Brian Foo applies a data-driven approach to generate

a song based on the median household income of the area surrounding the New York
City subway line 2 and its stations. The song follows a train driving from Brooklyn
through Manhattan to the Bronx. The dynamics of the song are bound to the income of
the area, as the income increases so does the quantity of instruments and their loudness.
This results in the usage of three instruments in the poorest area and up to 30 in the
wealthiest areas. The project uses Python to calculate the distance between stations,
assigns instruments to stations and generates a sequence of sounds. This sound sequence
is sent to ChucK for synthesis. The result is a song that transports the mean income of
an area through the medium of music.

The group Slub11 [8] is a live coding music duo that creates techno music by writing
and adapting their programs while performing. The two group members McLean and
Ward have their own approaches to creating music, while McLean mostly writes his
code in a command line, Ward depends on his own music interfaces. The interfaces
control their own music programs, which explore musical ideas ranging from chordal
progressions to a musical version of dancing people. Despite the music being created by
two different people on their laptops, the music matches as both inputs are synchronized
over a network protocol. Lastly, the synchronized music inputs are sent to a synthesizer
which outputs the music. The result is live performed electronic music that is ever
changing as the two musicians alter the music code and its parameters over time.

The presented projects are capable of creating authentic music that can be pleas-
ant to the ears, depending on the listeners taste. Boulanger-Lewandowski, Bengio and
Vincent created a RNN that learns to create and mimic the music provided by the data
set without human intervention. Although humans did not have any say on how the
music is created, the RNN generates authentic music. Two Trains maps specific data
to the audio synthesis and therefore does not have the same objective as the previous
project—an algorithm creating human-like music. Two Trains focuses on the context of
the data and tries to transport the data’s semantics to the listeners ears through sound.
Contrary to the previously described projects, Slub does not create static music, but
rather creates techno music on the fly by programming as the music is performed to an
audience. It uses live programming as an instrument to play.

3.5 Audio Synthesis for Chess
Up to this point, the techniques of general audio synthesis, the concrete approaches for
controlling synthesizers and their associated projects have been discussed. To complete
the scope of this analysis of adaptive soundtracks, the subject matter of chess needs to
be included.

3.5.1 Reunion
The music performance Reunion [9] from 1968 conceived by John Cage combines a game
of chess with the ambience of music. Reunion was performed in the Ryerson Theatre

10https://datadrivendj.com/tracks/subway/
11http://slub.org/

https://datadrivendj.com/tracks/subway/
http://slub.org/

3. Adaptive Soundtracks 25

in Toronto. The aim of Reunion was to build “an electronic chessboard that would se-
lect and spatially distribute sounds around a concert audience as a game unfolded” [9].
To implement such a chessboard, Lowell Cross mounted 64 photoresistors—one per
square—inside a chessboard. The photoresistors react to the exposure to light and al-
low the passing of a signal depending on their default configuration. While the four ranks
(1, 2, 7 and 8) covered by the initial position of pieces are turned off when the pieces
are placed on them, the other ranks (4, 5, 6 and 7) are turned off when the squares are
empty. The movement of pieces on the chessboard changes the state of the photoresis-
tors to either turn the different music inputs on or off. This configuration ensures that
a game starts silent. 16 music inputs are coupled to eight outputs through semi-random
combinations of inputs and outputs on the chessboard. 60 of the 128 possible combi-
nations can be utilized, which leads every input to be coupled with exactly four of the
eight available outputs. The electronic music inputs are composed by David Behrman,
Gordon Mumma, David Tudar and Lowell Cross. The outputs are eight loudspeakers
distributed in the theatre which should give the impression of moving sound.

The first game of the night was Duchamp against Cage, as seen in Figure 3.1.
Duchamp removed his king side knight from the game to even the odds for Cage—
Duchamp was a chess master and Cage his pupil. Nevertheless, Duchamp won decisively
in less than half an hour. The second game was played by Cage and Duchamp’s wife and
lasted for hours. Some moves in the two games created a panning sound effect when a
piece was moved over a series of squares. This allowed music inputs to wander, i.e., from
the back of the theatre to the front. While a hand moved a piece, this hovering hand
additionally influenced the photoresistors activity. As the games progressed and pieces
were removed from the board, the sound scenery also toned down. Reunion was not
received well by critics, as the first game was too short to unfold the sound dynamics
and the second game was dragged out for too long and not much happened for the
audience to be entertaining.

3.5.2 Reunion2012
Based on Cage’s performance, Reunion2012 [33] modernizes and expands on Reunion.
Reunion2012 again uses a physical chessboard which acts as a controller and eight
speakers for sound output. The chessboard incorporates 64 hall effect sensors to recog-
nize magnets within the pieces. The sensors’ signals are sent from an Arduino board to
a computer. The computer runs a chess engine and Max. Eight loudspeakers are equally
spaced around the chessboard to give surround sound. Reunion2012 can be broken up
to two kinds of performances. A concert version and an interactive version. The for-
mer mixes the live music input of eight musicians—four inputs for white and four for
black—similar to Cage’s Reunion. The concert version further develops Cage’s approach
by determining the number and kind of outputs being played by the movement on the
ranks and the piece’s color, and the movement on the files to decide on which speakers
the music should be heard. The interactive version generates music from samples. It
substitutes the musicians input determination process with the application of a number
of effects. The piece types are associated with their own leitmotif. These samples get
transformed using effects such as speed and pitch. Other effects get applied randomly
or by playing a certain move such as castling.

3. Adaptive Soundtracks 26

Figure 3.1: Duchamp (white) moves a modified chessboard, while Cage and Duchamp’s
wife watch [38].

3.5.3 Music for 32 Chess Pieces
Music for 32 Chess Pieces [24] is a software program designed for non-musicians to im-
provise music by moving chess pieces and adjusting parameters in the program using a
GUI. It consists of a game server that handles the game’s states and piece relationships.
The software can load plugins for mapping parameters (attack or support relationship,
movement speed, etc.) to influence the music (duration, tempo, phrasing). These plu-
gins can completely change the generated sound. The game server controls the audio
synthesizer such as ChucK, SuperCollider or Max via OSC.

3.6 Summary
Creating sound or music using chess as an input is a rather understudied field. However,
Reunion, Reunion2012 and Music for 32 Chess Pieces demonstrate how chess can be
utilized as an input method. Reunion only takes piece movements into account and
activates the music input semi-random [9]. Reunion2012 ’s interactive version has a solid
architecture, but falls apart when it comes to analyzing the chess game itself, as it only
takes piece positions and specific moves into account [33]. Music for 32 Chess Pieces
on the other hand can make use of the different piece relationships and manipulate the
sound accordingly [24].

3. Adaptive Soundtracks 27

Modern implementations process chess variables to a certain degree to influence
the music. The parameters used by Music for 32 Chess Pieces such as attack and
support relationship of pieces or player’s move speed [24] are quite basic. There are
more parameters that can be harnessed for audio synthesis such as: king safety, center
control, the development of pieces in the game, threats to pieces, captures, forks, pins,
skewers, castling, etc. Mapping these parameters to audio synthesis could change the
sound’s dynamics dramatically.

There are plenty of options for audio programming languages and tools that can be
utilized for creating audio or music for chess games. While Reunion2012 and Music for
32 Chess Pieces offer insights to a modern architecture for audio synthesis for chess,
there is little or none focus on how to convey meaning of a chess game through the
audio. This offers the opportunity to research the semantics behind chess moves and
parameters as well as the transformation to audio. Hence, providing meaningful feedback
to the chess players.

Chapter 4

Data-Driven Soundtracks for Chess

This chapter explores the general ideas behind the thesis and defines the requirements
the concept has to fulfill. The requirements are a detailed list which describe the intended
behavior of chess metrics and principles for the usage in an adaptive soundtrack, as well
as the soundtrack itself. Following the requirements is a list of limitations the concept
has. These limitations restrict the scope of the thesis, to set boundaries. Lastly, concrete
soundtrack designs are discussed by detailing the metrics, the sounds and effects, as well
as their interplay.

The concept behind a data-driven soundtrack for chess is to utilize the millions of
chess games1 available for an analysis to define not necessarily a complete depiction of
chess through its metrics, but a reasonable set of chess parameters that can provide
useful information for inexperienced chess players. Therefore, complex and high level
metrics used by advanced players such as piece development or imbalances on the chess-
board are dismissed. This narrows the broad set of possible metrics and helps to keep
the focus on the task at hand: the development of a soundtrack that supports chess
players in assessing the situation in the game. Which means to hint which player has
the upper hand in the game or create suspense as the number of threats on the board is
increasing as the game progresses. The calculated metrics are subsequently consumed by
an adaptive soundtrack. The soundtrack contains predefined events and loops that can
be manipulated by the metrics. These manipulations contain additions and subtractions
of audio samples, triggering certain sound effects such as distortion or low pass filters as
well as changing the intensity of provided examples according to the chess metrics. Lis-
tening to the adaptive soundtrack should enable inexperienced chess players to adapt
their positions according to the sound. The soundtrack generally hints the player on
their performance and does not make suggestions. This way the players have to come
up with their own moves, but are assisted to identify their current situation.

4.1 Requirements
The following list defines the requirements for the concept:

1https://database.lichess.org/ - The open-source chess server Lichess provides online chess matches,
analysis as well as learning tools. Additionally, Lichess is one of many online sources providing already
played chess games in a readable text format.

28

https://database.lichess.org/

4. Data-Driven Soundtracks for Chess 29

• The metrics used represent chess reasonably: The chosen set of chess metrics
does not need to depict chess as a whole, but includes metrics important for
communicating basic ideas in chess [61]. Depicting every detail of chess completely
in a computer program is not preferable, as new evaluation terms do not necessarily
improve the evaluation. Additionally, a complete and exact evaluation is probably
not achievable as the rules of chess are inherently too complex [28].

• Metrics change according to the positions on the chessboard: The set of
metrics used reflect changes on the chessboard. The metrics are to be chosen in a
way to capture the changes in the game. Which means, a minimal set of metric
should be able to capture a maximum of context on the board.

• Metrics fit the use case to provide information for inexperienced chess
players: The metrics can be digested from inexperienced players when confronted
with the information, the metrics provide.

• Metrics can be utilised in a real-time scenario: The metrics require little
time for calculation. Performance will be a major factor in future developments
of the project, as live evaluations of chess games will come into focus.

• The soundtrack changes its sound according to the metrics: A significant
change in a metric is reflected by the soundtrack. The tonality, sound effects and
their intensity is regulated by the metrics and can either change analog to the
metric itself or when passing predefined thresholds. Consequently, the soundtrack
only changes when required and in the required intensity.

• The soundtrack’s sounds and sound effects can be distinguished from
another, to enable the listener to associate the effect with the changes
occurring on the chessboard: This should enable the listener to learn the
meaning of the effects and react accordingly. Using the soundtrack repeatedly
should increase the soundtracks meaning and intent to the listener, hence have a
learning curve.

• The soundtrack can recognize and communicate critical situations based
on the chess metrics: The soundtrack utilizes appropriate sounds to transport
the intent behind the metric. The listener should hear when they are in a critical
situation, making it easier to defend or win a position.

• The soundtrack creates suspense for the listener: Critical situations, as
mentioned in the previous list item, should also create tension which can make
the listener uneasy, without being too provoking.

• The soundtrack is pleasant to listen to repeatedly, without straining its
listeners: Chess games have a broad range of time available for players. This can
range from less than 15 minutes per player in a Blitz to 90 minutes per player
plus additional 30 minutes when reaching move 40 in a tournament game [45].
As a result the soundtrack must be adequate and without elements which already
annoy the listener after a short time.

• The soundtrack reacts to the metrics immediately: This does not mean
the soundtrack changes immediately to the listeners ear, but rather that the chess
metrics can be communicated to the soundtrack without delay. Changes in tonality
or sound effects can intentionally fade in slowly to improve the quality of the
soundtrack.

4. Data-Driven Soundtracks for Chess 30

4.2 Limitations
It is not possible to capture the players’ intentions and plans, as the program does
not have insights into the players’ train of thought. Often players try to achieve a
advantageous position in a number of moves, which cannot be easily anticipated. The
two options are either a search by a chess engine or an opening book. Typically, chess
engines evaluate a search tree by searching a certain number of moves ahead, also
called search depth, and the most promising tree branch returns the next best move to
make [11, pp. 61–65]. Secondly, an opening book stores multiple standard openings [28,
p. 273; 11, pp. 77–79]. It contains a limited number of moves considered to be best
suited in the early game. The opening book is applied as long as the player plays moves
contained in the opening book. The openings can be anticipated, but only if the player
has knowledge of the opening. An inexperienced player won’t follow standard openings
and therefore an opening book will be of little use. Both methods can explore possible
moves and variations but not the actual moves played by the player.

A second limitation is to recognize future possible threats. It is difficult to anticipate
future threats, as specific movements have to happen for this to occur. This would
include looking ahead and evaluating every possible move to a certain depth, not unlike
calculating the best move. This could be used when the evaluation of the best move
and possible threats is done in the same process, as both would evaluate a search tree.
As opposed to when using a chess engine such as Stockfish and additionally evaluating
possible threats would result in an increase of processing time.

Completely sound metrics are not achievable as assertions and decisions on the cal-
culation process have to be made by humans [28, pp. 261–262]. The metrics are approxi-
mations based on the analysis of numerous chess games, resulting in empirical evidence.
Therefore these metrics do not hold true for every situation and can be countered by
certain examples. A chess engine’s evaluation function relies on decisions the author
makes and their evaluation for the same position can vary from version to version. The
decisions are often derived from multiple publications and forum posts from within the
chess community. This makes chess metrics rely on empirical evidence, human consensus
and a lot of fine-tuning over time.

Furthermore, sound can only transport a limited number of sounds and effects before
it gets an obscure mixture of sounds. As the user should be able to identify the individual
sounds and effects used in the soundtrack, it constraints the number of sounds available.

Lastly, the soundtrack is deterministic and sounds the same when repeated for the
same game. The sounds are tuned to the metrics used for the soundtrack. Consequently
if the exact same position occurs in two different games, the soundtrack will behave
similar, with a few exemptions for situational metrics that react to the move itself.
The soundtrack will always have the same basic mood and the same effects, but their
sequence and combination will vastly differ. This makes the soundtrack recognizable
and a learning effect can arise, as the player learns the purpose behind each sound.

4.3 First Soundtrack Design
The first concept for an adaptive soundtrack uses music to accompany chess games. The
idea is to assign a distinct music track for each player. Only one of the two tracks is

4. Data-Driven Soundtracks for Chess 31

played at a time as it signals which player has the upper hand. A change in the lead
is followed by a change to the other music track. The soundtrack loops over predefined
regions in the tracks and switches between the regions seamlessly. The regions are defined
for different intensity levels in the game. As the game reaches more critical situations,
the music adds melodies.

4.3.1 Samples
The two music tracks are provided by the sound engine FMOD—described in Sec-
tion 3.2—itself. The orchestra track has a heavy metal sound, while the electronic track
consists out of electronic elements, as the name suggests. Both tracks have a similar
structure, tempo, tonality and layers. The audio tracks are written in the key of A mi-
nor. The tracks have a 4/4 time signature and a tempo of 135 beats per minute. The
tracks consist of 32 measures and can be divided into four eight measures long parts.
These parts have a different sound and chord associated with them. The parts are from
now on called A, B, C and D and can be described as follows:

• Part A starts neutrally with an A minor chord.
• Part B changes to the C major chord and gets more intense as it changes the

rhythm.
• Part C changes from C major to A minor again and functions as a bridge to Part

D.
• Part D changes from A minor to E minor and is the most intense of all four Parts.

The tracks also have four layers which add new instruments to the sound. Layer 1 is a
base track using the most prominent instrument as well as a little use of drums. While
the other layers add percussive elements, bass and additional melodies.

4.3.2 Audio Tracks
The sound design uses two different audio tracks. One is electronic and the other a
heavy metal track. Each track consists of four layers, they share the same speed of 135
BPM and can be divided into the same sections. For each of the two tracks three loop
regions were defined for low, medium and high intensity. Each loop region is four bars
long.

4.3.3 Leading Player
A player is leading when the score is evaluated in their favour. The chess engine Stockfish
offers an evaluation, as described in Section 2.4, which can be a positive or negative
number of centipawn and signal an advantage for the white or black player, respectively.
A change in lead is communicated to the players by a change in tune. The soundtrack
plays the electronic track for a white leading player and the orchestra track for a black
leading player. Hence, the players can easily identify a score evaluation favouring the
other player. For controlling the adaptive soundtrack a Leading parameter is defined
accepting 0.0 for white’s advantage, 1.0 for black.

4. Data-Driven Soundtracks for Chess 32

4.3.4 Intensity
An Intensity parameter is introduced to communicate the significance of the player’s
advantage in centipawn resulting from the Stockfish evaluation. The intensity is arranged
into three categories: low, medium and high intensity. The soundtrack uses parts A, B
and D from the samples to signal the intensity and repeats the current part as long
as the intensity level is sustained. The intensity is calculated by dividing the absolute
score by 1000. Therefore, the intensity level ranges from 0.0 to 1.0, making it necessary
to ignore score evaluations above 1000 centipawn. The resulting Intensity parameter
controls which loop region gets played. It ranges from:

• 0.0 to 0.1 (0 to 100 centipawn) for the low intensity loop using the neutral Part A,
• 0.11 to 0.3 (110 to 300 centipawn) for the medium intensity loop using Part B and
• 0.31 to 1.0 (310 to 1000 centipawn) for the high intensity loop using Part D.

4.3.5 Possible Moves
The possible legal moves available for a player in a turn inform the player on their
opportunities on the chess board. A high number of possible moves tells the players
that they have relative freedom on choosing their next move. On the other hand a low
number of possible moves can signal a dangerous situation as the player has to react to
threats on the board. Often this means that the player’s king is check and they have
to counter the threat immediately. This shows the quality of communicating critical
situations even if it doesn’t come much to use as players try to avoid these situations
in the first place. The soundtrack utilizes this metric using the parameter Possible
Moves. The parameter defines a threshold for the number of possible moves lower than
five. If true, it triggers a low pass filter to dampen the soundtrack. The sound makes
the lack of mobility quite apparent to the players.

4.3.6 Is Check
The Is Check parameter tests if the player’s king is check. If this is the case a heartbeat
track gets activated and plays as long as the king is threatened. A checked king is rather
obvious to every type of player, but it enriches the soundtrack to reflect a distressing
situation.

4.3.7 Move Category
In chess, a move can be described as good, neutral, inaccuracy, mistake and blunder.
These categories are determined by comparing the scores of the actual move and the best
available move according to a chess engine, also called the best move score difference.
The larger the centipawn difference, the graver becomes the mistake. According to
Chess.com [50, 52] and Lichess [51] moves can be defined as follows:

• An inaccuracy is a weaker move than the best available move and can be defined
as a 30 centipawn (Chess.com) or 50 centipawn (Lichess) difference compared to
the best move.

4. Data-Driven Soundtracks for Chess 33

• A mistake is a bad move, which affects the position immediately. A move is rec-
ognized as a mistake starting with a 90 centipawn (Chess.com) or 100 centipawn
(Lichess) difference.

• A blunder is a bad move which results in a loss of material or the game in one
or two moves. The threshold for a blunder is either 200 centipawn (Chess.com) or
300 centipawn (Lichess).

The thresholds defined by Lichess are better suited for the use case of evaluating inex-
perienced players, since the thresholds are more forgiving.

In the context of the adaptive soundtrack, the move category parameter gives an
immediate feedback to the players to recognize a mistake being made and its significance.
Inaccuracies, mistakes and blunders are signaled right after a piece moved. A short sound
effect is triggered which fades out after a few seconds. With increasing significance the
volume of the sound effect rises too. This makes blunders easier to make out than
inaccuracies.

4.3.8 Attackers Count
An attacker is a piece which could capture one or more pieces from the other player and
therefore threaten them. The higher the number of attackers, the greater the number of
threatened pieces which leads to an increasingly dangerous situation. The Attackers
Count parameter calculates how many of the opponent’s pieces could capture one of
the current player’s pieces. If the count is greater than four it activates one of the four
original layers from the audio tracks. This audio layer is normally deactivated. As the
count rises it gains more volume. The audio layer itself tries to increase the tension in
the music.

4.4 Second Soundtrack Design
The second implementation of an adaptive soundtrack is a soundscape, which refrains
from using rhythm or melody. It utilizes continuous sound samples by using different
synthesizers created with Logic Pro X ’s plugin Alchemy2. The soundscape adds and
removes single tone samples according to the chess metrics. The samples can be faded
in and out and sound effects enrich the soundscape. It aims to be pleasant to the players
over longer periods of time, because compared to the first sound design, described in
Section 4.3, the soundscape does not use musical elements which wear off or become
annoying over time.

4.4.1 Samples
The Alchemy plugin for Logic Pro X is a synthesizer containing over 3000 sounds. Its
sound-generating engines allow the creation of dynamic sounds that slightly change over
time. This gives the sounds a refreshing quality. For the soundscape 63 single tone sam-
ples were recorded in Logic Pro X using the Alchemy synthesizer. Each sample has a
length between 50 and 55 seconds. Three sounds were chosen for the soundscape. Aquifer

2https://www.apple.com/lae/logic-pro/plugins-and-sounds/

https://www.apple.com/lae/logic-pro/plugins-and-sounds/

4. Data-Driven Soundtracks for Chess 34

Blockage can be described as an eerie, droning sound, making its listener uneasy. The
samples span over one octave ranging from c3 to c4, resulting in 13 samples. Hemi-
sphere can be described as neutral and aloof. Warm Glistening has a more prominent
and narrow sound as opposed to the other sounds which have a broader range of sounds
incorporated in them. This makes Warm Glistening perfectly suitable to highlight im-
portant factors. Both Hemisphere and Warm Glistening span over two octaves ranging
from c3 to c5, resulting in 25 samples. The samples are key agnostic as every half step
tone is recorded from the twelve tone equal temperament, which is the basis for every
kind of western music.

4.4.2 Base Layers
The base layers consist of five different notes, d3, g3, c4, f4 and a#4. The notes are each
a fourth apart, which results in a neutral sound when played simultaneously. One of the
notes played continuously throughout the game. But the note can change depending
on the score evaluation from Stockfish. C4 is assigned as neutral note for a score eval-
uation between −99 to +99 centipawn. A score ranging from +100 to +299 centipawn
symbolizes a moderate advantage of the white player over the black player and therefore
changes to the higher note f4. An evaluation greater or equal to +300 centipawn signals
a significant advantage for the white player and the soundtrack starts to play the even
higher note a#4. The values for a black advantage are exactly mirrored, meaning a
score from −299 to −100 centipawn enables the lower note g3 and an evaluation lower
or equal to −300 centipawn triggers the lowest note d3. As long as the evaluation stays
in one of those defined ranges the base note does continue to play. This way the players
should always be able to tell who is in the lead.

4.4.3 Fluctuation
A significant change in the Stockfish evaluation after a move has been made, can signal
the impact of a move in the game without interpreting the meaning. This score change
can mean the win or loss of important material, a mistake or blunder, a brilliant defense
of a major threat, etc. Such outstanding moves should be highlighted. This change is
communicated to the players by alternating base tones. This effect fades the base tones
in and out as long as the position created by this significant move has not changed.
The fluctuating_score parameter controls this effect. A neutral score evaluation,
according to the definition in Section 4.4.2, switches between the notes g3, c4, f4. A
white favouring score switches between the notes f4 and a#4. A black favouring score
switches between the notes d3 and g3. The alternating effects create a sense for change
without losing the quality of communicating the leading player while three base notes
fading in and out.

4.4.4 Unopposed Threats
Unopposed threats is a good indicator on the current state of the game. An unopposed
threat increases the chance of a piece being captured as the opponent can safely capture
the piece without risking their own piece. Adding additional notes for every unopposed
threat illustrate the suspension in the game. The notes start with e3 and each additional

4. Data-Driven Soundtracks for Chess 35

note is a half step above the previously added note. The effect consists of six layers,
making it capable of representing up to six unopposed threats.

4.4.5 Mistake
The effect defined uses similar move categories as described in Section 4.3.7. It activates
a low note using the eerie Aquifer Blockage sound. The note is played as an immediate
reaction to the player’s mistake. The note fades out after a few seconds to give way to
other sound elements to be heard. A mistake triggers an f#3 and a blunder triggers
an even lower c#3. Inaccuracies are not utilized as they represent a too insignificant
centipawn loss for an inexperienced player to offer additional value.

4.4.6 Is Capture
A capture is a significant event in chess, as decreasing the number of chess pieces pro-
gresses the game towards the end game. As a capture is not a continuous state but an
irregular event, an immediate but short reaction is best suited—similar to mistake’s ef-
fect from Section 4.4.5. Consequently, capturing a chess piece triggers a distortion effect.
The effect lasts a few seconds before fading out. The effect should make the soundtrack
become louder and alert the chess player.

4.4.7 Possible Moves
This implementation functions in a similar way to the first implementation described
in Section 4.3.5. It keeps track of the possible legal moves for the current player and
enables a low-pass filter if the possible moves drop below or equal to five moves. The
effect signals the player that they are running out of options to play.

4.4.8 Attack/Defense Relation
The attack/defense relation analyzes every piece involved in an attack, including at-
tackers, guards and the attacked piece. The pieces’ corresponding centipawn values are
used to calculate the relation between attackers and guards in an attack. Then those
relations are aggregated per player and the white and black relation are compared to
each other. Therefore, the relation gives information on which side has the better at-
tacks on the board in the regards for their offensive and defensive pieces. In the sound
design’s context the base notes wander from one player to another depending on the
attack/defense relation. The base notes are panned to the left channel when the black
player is in the lead, the opposite happens when the white player has the advantage
in the attack/defense relation. The base notes are played on both channels when the
parameter is around zero.

4.5 Summary
The first sound design is used to explore the capabilities of FMOD and chess parame-
ters. The usage of premade audio samples enables an immediate implementation of the
design without spending valuable time on creating samples. After a demonstration to

4. Data-Driven Soundtracks for Chess 36

an audience, a conclusion was reached to discard the melodic and rhythmic samples as
they led to a overstimulation of senses and are rather distracting from chess itself. The
verdict led to the development of a much more sensible soundtrack design.

This second soundtrack design aims to be much more subtle compared to the first
design. The design allows the chess player to focus on the game at hand. The sound-
track hints on the player’s performances and signals critical situations to create a more
dramatic sound when necessary. The sound design’s implementation is documented in
Chapter 5 and evaluated in great detail in Chapter 6.

The defined requirements help to evaluate the sound design for the added value it
can provide to chess players. The grade of compliance with the requirements will further
be discussed in Chapter 6.

Chapter 5

Implementation

The second soundtrack design, as described in Section 4.4, is a product of researching
possible chess metrics in relevant lecture and the experimentation and exploration of
capabilities within the software implementation. The software implemented for this
thesis realizes the goals for enabling an in-depth chess metric analysis, as well as creating
an data-driven soundtrack which conveys important information for inexperienced chess
players. Hence, the software is split into a number of different programs that are built
on each other and have their own objectives.

5.1 Architecture
The two main applications for the realisation of the data-driven soundtrack are the
Chess Analysis Tool and the Chess Music Tool. The Chess Analysis Tool1—written in
Python—takes chess games as input, iterates over the game move by move and writes
the newly calculated chess metrics into a comma-separated values (CSV) file for later
processing by the Chess Music Tool. PGN files—containing meta data, as well as the
moves of a complete chess game—provide the every necessary information for a com-
plete analysis. Each move is analyzed sequentially, beginning with the first move. The
Python chess library python-chess2 is incorporated for the purpose of analyzing a chess
game. python-chess offers a chessboard representation, move validation, move genera-
tion, communication with chess engines via UCI, as well as other functions useful for
an in-depth analysis. The chess engine Stockfish—as described in Section 2.4 is utilized
to generate an objective score evaluation of a move. Some of the computed information
by the program includes: Stockfish’s score, the best possible move, mistakes, threats,
attackers, guards, material, etc. Lastly the Chess Analysis Tool saves the information
in a CSV file, as well as generates a Scalable Vector Graphics (SVG) file for every chess-
board position in the game. The generation of the CSV and SVG files for a game is
specifically the task of the Analysis CSV program.

Then the Chess Music Tool reads the newly generated CSV and SVG files for con-
trolling the soundtrack. The Chess Music Tool is written in C++ and its main purpose is

1The Chess Analysis Tool is based on Professor Stöckl’s initial analysis program for the visualisation
of chess games: https://medium.com/@andreasstckl/chessviz-graphs-of-chess-games-7ebd4f85a9b9.

2https://python-chess.readthedocs.io/

37

https://medium.com/@andreasstckl/chessviz-graphs-of-chess-games-7ebd4f85a9b9
https://python-chess.readthedocs.io/

5. Implementation 38

Chess	Analysis	Tool

Chess Libary

python-chess

Stockfish

Bulk Analysis Rep. B. Analysis Analysis CSV

moves

metrics, time metrics, time

move, limit score, best move

CSV, SVG

PGN

Database Database

metrics,

Chess Music Tool

Chess Music

QT GUI

FMOD Bank

assets

positions

metrics,
pos.

sounds

Figure 5.1: Architecture of the implemented software.

to actuate the FMOD bank and depict the current situation including the chess param-
eters in an Qt3 user interface. As described in Section 3.2, FMOD exports soundtracks
to a standalone bank that includes every asset and their usage within the soundtrack.
This bank parameters are exposed through an C++ API. The data from the generated
CSV files are mapped to the corresponding FMOD parameters. When browsing through
each chess move the soundtrack reacts immediately. The user interface—created with
the usage of the frontend framework Qt—provides visual context to the soundtrack’s
reactions. It displays the corresponding SVG which depicts the current chessboard po-
sition in the game. Furthermore, the chess metrics from the CSV file are shown in as
text in the UI. The user interface provides controls to switch moves back and forth, as
well as an autoplay checkbox to continuously draw moves in a fixed interval, until the
game ends.

Apart from the two main programs, two other programs are created to enable a
chess metric analysis—described in Chapter 6. Bulk analysis utilizes a similar approach
to analyzing a chess game, but not only for one game but a multitude of chess games. The
program takes a single PGN file that stores multiple chess games, analyzes each game
and saves their analyzed metrics to a database. The data includes the chess metrics, the
time it takes to compute those metrics, as well as the moves associated game data.

Repeated Bulk Analysis is a variation of the Bulk Analysis program as it analysis dif-
ferent input parameters for the score evaluation by Stockfish. Stockfish can take different
limiting factors to their evaluation function, such as the maximum time to compute the
evaluation, the maximum depth the search tree is traversed to, the maximum number
of tree nodes it takes into account, etc. The input parameters for the evaluation are
10 ms, 20 ms, 50 ms, 100 ms, 200 ms, 500 ms, 1000 ms, 2000 ms, as well as 17 depth-levels
and 20 depth-levels. Additionally to this broad input parameter analysis, each move is
evaluated five times to compute the disparity of the chess engine’s score calculation

3https://www.qt.io/

https://www.qt.io/

5. Implementation 39

Game
PK id

event
site
date
round
white
black
whiteelo
blackelo
result
length

Move
PK id
FK1 game_id

fullmove_number
ply_number
turn
san
score
score_change
best_move
best_move_score
best_move_score_diff
best_move_score_diff_category
is_check
is_capture
is_castling
possible_moves_count
possible_moves_quality
is_capture_count
is_capture_weighted
attackers_count_white
attacked_pieces_count_white
guards_count_white
guarded_pieces_count_white
attacked_guarded_pieces_count_white
unopposed_threats_count_white
threats_count_white
fork_count_white
pin_count_white
skewer_count_white
...
threats_centipawn_all
attack_defense_relation
material

Timing
PK id
FK1 move_id

fullmove_number
ply_number
turn
san
score
score_change
...
threats_centipawn_all
attack_defense_relation

Score
PK id
FK1 move_id

score_0010
score_0020
score_0050
score_0100
score_0200
score_0500
score_1000
score_2000
score_5000
score_15
score_20
best_move_...
best_move_score_...
best_move_score_diff_...
best_move_score_diff_category_...

Timing_score
PK id
FK1 score_id

score_0010
score_0020
score_0050
score_0100
score_0200
score_0500
score_1000
score_2000
score_5000
score_15
score_20
best_move_...
best_move_score_...
best_move_score_diff_...
best_move_score_diff_category_...

Figure 5.2: Entity relationship model of the SQLite database.

for each input parameter. This makes it possible to determine the best suitable input
parameter for Stockfish’s evaluation function. More details on the Stockfish evaluation
can be read in Chapter 6.

Figure 5.1 depicts the software’s architecture including the four programs Bulk Anal-
ysis, Repeated Bulk Analysis, Analysis CSV and Chess Music Tool. The three programs
in the Chess Analysis Tool block have a PGN input, use the chess analysis functions de-
fined in the Chess Library. The Chess Library in turn utilizes the board representation,
as well as chess engine support provided by python-chess. As mentioned before Bulk
Analysis and Repeated Bulk Analysis store their output into a database. Analysis CSV
on the other hand generates a CSV storing the metrics as well as an SVG depicting the
chessboard for every move. Within the Chess Music Tool block the program consumes
the generated CSV and SVG files and display their data in the Qt user interface. The
Chess Music Tool program then proceeds to communicate with the prebuilt FMOD
bank through the FMOD Studio API. Lastly, the FMOD bank stores the sound assets
and plays the according sounds of the soundtrack.

5. Implementation 40

5.1.1 Database

The SQLite4 database—as despicted in Figure 5.2—stores game meta data, the game’s
moves, the moves associated chess metrics and the computing duration for the metrics.
This results in a database scheme consisting of the following tables: Game, Move, Timing,
Score and Timing_score. The relationships between the tables are:

• A game stores many moves, but a move belongs to only one game.
• A move has zero or one timing and a timing belongs to only one move.
• A move has zero or one score and a score belongs to only one move.
• A score has zero or one score timing and a score timing belongs to only one score.

The tables Timing and Timing_score have the same attributes as Move and Score,
but instead of saving the computed values both store the time needed to compute the
attributes in seconds. This allows an evaluation for the qualification of metrics in a
real-time scenario. In the Move table attributes may have postfixes that signify the
attribution to a player. The postfixes are white, black or all and affiliate the attribute
to the white player, black player or both players, respectively. If non of the postfixes
are attached, the attribute is move specific, such as fullmove_number, score or best
move. An exception of these patterns are material and attack_defense_relation.

5.2 Details on the Chess Analysis Tool
A closer look upon the code reveals the mechanics and complexity involved in the
implementation. In this section the Chess Analysis Tool’s code is inspected and described
in greater detail than in Section 5.1. First the initial operations for loading a chess game
from a PGN file, the retrieval of a connection to a chess engine and the structure of
the main program are described. Then the definition and computation of metrics are
discussed.

5.2.1 Open a Chess Game
To begin the analysis process the python-chess library loads a chess game from a PGN
file into a game variable, as seen in Program 5.1. The variable board is a stack of moves,
in which a move represents a state of the chessboard. The board variable is very capable,
as it provides functionality, such as board validation, move generation, attack retrieval,
the manipulation of the move stack, etc [60]. board is used throughout the chess analysis
to compute the chess metrics.

5.2.2 Connect to Stockfish
Next, the chess engine Stockfish is used to evaluate and retrieve the score of a move.
Program 5.2 connects to the chess engine via UCI5. The function returns an engine
object that is useful for evaluating moves and compute the best possible move in a
given situation.

4https://www.sqlite.org/
5Universal Chess Interface enables the communication between a chess engine and a chess interface,

as described in Section 2.5.

https://www.sqlite.org/

5. Implementation 41

Program 5.1: Open a chess game.

1 import chess
2 filename = "kasparov_karpov_1986"
3 pgn = open("pgn/" + filename + ".pgn")
4 act_game = chess.pgn.read_game(pgn)
5 board = act_game.board()

Program 5.2: Connect to Stockfish.

1 import chess.engine
2 # Connect program with the chess engine Stockfish via UCI
3 def connect_to_stockfish():
4 return chess.engine.SimpleEngine.popen_uci("engine/stockfish_10_x64.exe

")

5.2.3 Main Program for Chess Analysis
Program 5.3 displays the instructions required to read a chess game’s PGN file, analyze
its every move and generate the output as CSV and SVG files. First of the program
imports python-chess for game manipulation, IPython for generating SVG files and the
projects own chess related methods and utility methods from chess_analysis.py and
chess_io.py, respectively. The main method initializes the time limit for Stockfish’s
evaluation, retrieves an chess engine object for the communication between the project
and Stockfish, sets up a folder structure for the games output, reads a chess game from
a PGN file and sets up the counts list, in which every calculated metric is stored for
every move.

The for loop iterates over each move of a chess game and provides the ply_number
and mv (move) for the current move. The ply_number is a half move, meaning the
movement of a piece by a single player—see Section 2.1.1 for more details on moves.
An important detail for the move evaluation is that compute_score() computes the
score for the current move and the best possible move, which is not played yet. For this
specific reason the score needs to be evaluated two times in the first run of the loop.
First to calculate the best possible move and second to evaluate the move’s score after
the move has been applied to the board. The calculation of most metrics is omitted
from Program 5.3 due to a lack of space in this document, nevertheless every chess
metric is computed within the for loop and appended to the counts list. At the end of
each move evaluation the best move and score are stored for the next iteration as both
variables are required for the computation of the metrics. A SVG representation of the
current board position is stored to the games output folder and is named by using the
current move’s ply number. When the loop has finished, the game is stored to a CSV
file for the use of the soundtrack.

5. Implementation 42

Program 5.3: Main method for analysis_csv.py.

1 import chess
2 from IPython.display import SVG
3 from lib import chess_analysis, chess_io
4
5 def main():
6 time = 0.100 # time limit for Stockfish evaluation
7 engine = chess_analysis.connect_to_stockfish()

8 filename = "kasparov_karpov_1986"

9 chess_io.init_folder_structure(filename) # prepare folders for output
10 act_game = chess_analysis.read_game(chess_io.open_pgn(filename))

11 board = act_game.board() # Get the intial board of the game
12 counts = { # saves a list for every metric
13 "score": [], # stores the scores calculated by Stockfish
14 "best_move": [], # stores the best move in SAN
15 ...

16 }

17 prev_score, score_change, score = 0

18 best_move, next_best_move = None
19 # Iterate through every moves and play them on a board.
20 for ply_number, mv in enumerate(act_game.mainline_moves(), start=1):
21 fullmove_number = board.fullmove_number

22 if best_move is None: # calculate best move for first turn
23 not_needed, best_move = chess_analysis.compute_score(

24 engine, board, time)

25 best_move_score = chess_analysis.compute_best_move_score(

26 engine, board, best_move, time)

27 board.push(mv) # apply move
28 score, next_best_move = chess_analysis.compute_score(

29 engine, board, time)

30 counts["score"].append(score) # append parameters to the arrays
31 counts["best_move"].append(best_move)

32 best_move = next_best_move

33 prev_score = score

34 chess_io.export_board_svg(board, filename, len(ply_number), mv)

35 chess_io.write_dict_to_csv(filename, counts)

36 engine.quit()

37 main()

5.2.4 Computing Score and Best Move
Stockfish provides a very effective and efficient move evaluation as a score. The score is
an accumulation of differently weighted values, e.g., material, threats, pawn structure,
king safety. The score signals an advantage for a player over the other player. A positive

5. Implementation 43

Program 5.4: Compute score and best move.

1 def compute_score(engine, board, time):
2 play = engine.play(board=board, limit=chess.engine.Limit(time=time),

3 info=Info.ALL)

4 score = play.info.get('score').white().score()
5 if score is None:
6 score = 0

7 return score, play.move

Program 5.5: Compute best move’s score.

1 def compute_best_move_score(engine, board, move, time):
2 board.push(move)

3 info = engine.analyse(board=board, limit=chess.engine.Limit(time=time),

4 info=Info.ALL)

5 board.pop()

6 score = info.get('score').white().score()
7 if score is None:
8 score = 0

9 return score

score means an advantage for White and a negative score an advantage for Black. More
details on the evaluation functions used by chess engines are described in Section 2.3.

For the score calculation the Stockfish engine is used, as seen in Program 5.4.
The engine plays a move on the given chess board for a specified time frame. The
engine.play() function returns a detailed list containing information on the analyzed
move. Both the score and best move are extracted from this list. The score is returned
as a centipawn value and the best move as a move object, in which the piece’s initial
square (from square) and target square (to position) are stored.

The best move is further analyzed to evaluate its score. Program 5.5 calculates the
score for the previously generated best move from Program 5.4. The engine.analyse()
function works similar to engine.play() with the notable difference of not calculating
the best possible move. engine.analyse() requires the move to be pushed onto the
board before the evaluation. Afterwards the move is to be removed again as the best
possible move is not actually played.

5.2.5 Categorize Difference between Best and Actual Move
The difference between the best possible move and the player’s actual move is calculated
pretty easily. To determine the meaning of this difference, it is necessary to divide it
into five categories: blunders as 4, mistakes as 3, inaccuracies as 2, neutral moves as 1
and good moves as 0. A blunder—as described in Section 2.1.4 is a common term used
in chess for a move that gives up a player’s advantage or even leads to an imminent

5. Implementation 44

Program 5.6: Categorize difference between best and actual move.

1 def categorize_best_move_score_diff(best_move_score_diff):
2 category = 1

3 if best_move_score_diff >= 300:
4 category = 4

5 elif best_move_score_diff >= 100:
6 category = 3

7 elif best_move_score_diff >= 50:
8 category = 2

9 elif best_move == actual_move:
10 category = 0

11 return category

defeat. The other categories are more or less derived from chess computers to give a more
granular evaluation of a move’s performance. A difference greater than 300 centipawn is
considered to be a blunder. A difference between 100 and 299 centipawn is categorized
as mistake. An inaccuracy occurs between 50 and 99 centipawn. A value below 50 is
considered as a normal move. Lastly, if a move matches the best possible move it is
a good move. The centipawn boundaries are taken from lichess [51]. This scheme is
depicted in Program 5.6.

5.2.6 Analyzing Captures
It is important to not only signal if a piece or pawn has been captured but additionally
convey the captures significance to the game. The function

𝑐(𝑝aa, 𝑝ab, 𝑚c, 𝑚p) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑣(𝑝ab) if 𝑚c is capture ∧ 𝑝ab is undefended,
𝑣(𝑝ab) − 𝑣(𝑝aa) if 𝑚c is capture ∧ (𝑝ab is defended

∨ 𝑚p is capture ∧ 𝑠to(𝑚p) = 𝑠to(𝑚c)),
0 otherwise,

(5.1)

calculates if a capture has led to winning material, losing material or an exchange of
pieces. 𝑐() is the weighted capture function, 𝑝aa is an attacking piece, 𝑝ab is an attacked
piece, 𝑚c is the current move, 𝑚p is the previous move, 𝑠to(𝑚c) is the square the current
move moves its piece to, 𝑠to(𝑚p) is the same but for the previous move and 𝑣() is the
centipawn value function. The attacker piece’s centipawn value is only subtracted from
the attacked piece’s value if the attacked piece is either guarded or the move leads to
an exchange of pieces. An exchange can occur when to consecutive plies have the same
destination square (to_square). Thus, an exchange can be determined by the same
two destination squares of the current and previous ply. A positive centipawn result is
a clear gain of material, while a negative value loses material and should be avoided
at all times. Therefore, not every capture of pieces is beneficial for an attacker and
the involved pieces’ values and their surrounding pieces should be taken into account.

5. Implementation 45

Program 5.7: Compute the associated weight to a capture.

1 def compute_is_capture_weighted(board, mv):
2 value = 0

3 if board.is_capture(mv):
4 value = get_piece_centipawn(board, mv.to_square, True)
5 if len(board.attackers(not board.turn, mv.to_square)) > 0: #guarded
6 value−=get_piece_centipawn(board, mv.from_square, False)
7 else:
8 prev_mv = board.pop()

9 if board.is_capture(prev_mv)
10 and prev_mv.to_square==mv.to_square: #exchange
11 value−=get_piece_centipawn(board, prev_mv.to_square, False)
12 board.push(prev_mv)

13 return value

Program 5.8: Detect attacks and returns a list of attack moves.

1 def compute_attack_moves(board, color):
2 pieces = board.piece_map()

3 attack_moves = list()

4 for square, piece in pieces.items():
5 attackers = [i for i in board.attackers(not piece.color, square) if
6 board.piece_at(i).color == color]

7 for a in attackers:
8 attack_moves.append(chess.Move(a, square))

9 return attack_moves

Program 5.7 implements the calculations and its cases from Equation 5.1 to return a
weighted centipawn value for the capture.

5.2.7 Detect Attacks
Program 5.8 searches for attacking moves that attack the other player’s pieces. The
function iterates through every piece on the board. The board.attackers() detects
attackers of the given color for a certain square. The attacking and the attacked squares
are combined to a move and added to a list. After iterating over every square a list
containing every attack move is returned.

5.2.8 Detect Guards
Program 5.9 works in a similar way to the determination of attack moves in Pro-
gram 5.8. It iterates every piece on the board. The interesting fact of the functionality of
board.attackers() is that the function does not check if the given square is occupied

5. Implementation 46

Program 5.9: Detect guards for pieces and return a list of guard moves.

1 def compute_guard_moves(board, color):
2 pieces = board.piece_map()

3 guard_moves = list()

4 for square, piece in pieces.items():
5 if piece.color == color:
6 guards = board.attackers(color, square)

7 for guard in guards:
8 guard_moves.append(chess.Move(guard, square))

9 return guard_moves

Program 5.10: Detect unopposed threats and return them as a list threatened pieces.

1 def compute_unopposed_threats(attacked_pieces, guarded_pieces):
2 unopposed_threats = set()

3 for attacked_piece in attacked_pieces:
4 if attacked_piece not in guarded_pieces:
5 unopposed_threats.add(attacked_piece)

6 return list(unopposed_threats)

by a white piece, black piece or a piece at all. It only returns the pieces of the given
color that are capable of moving to the square. Consequently, the board.attackers()
function can be utilized for both generating attackers, as well as guards.

5.2.9 Detect Unopposed Threats
Unopposed threats are attacking the opponent’s hanging pieces—refer to Section 2.1.2
for a definition. Unopposed threats are always represent a safe way to win material,
as the attacking piece cannot be captured in a counter move. Program 5.10 defines a
function which takes attacked_pieces and guarded_pieces generated by Program 5.8
and Program 5.9. Each attacked piece is iterated over and compared to its existence
in the guarded pieces list. If the attacked piece is not guarded, the attack counts as a
unopposed threat.

5.2.10 Determine the Number of Possible Moves
Determining the number of legal moves a player has available in a given position is a
simple solution to the mobility metric—as described in Section 2.1.6. The python-chess
library provides a built-in function to retrieve the legal moves from the board at the
current position. The Program 5.11 counts the number of legal moves.

5. Implementation 47

Program 5.11: Function to count the number of legal moves.

1 def compute_move_count(board):
2 return len([i for i in board.legal_moves])

Program 5.12: Compute a list of threat moves for the given attack moves and attacked
guarded pieces.

1 def compute_threat_moves_weighted(board, attack_moves,
attacked_guarded_squares):

2 threat_moves = list()

3 for attack_move in attack_moves:
4 if attack_move.to_square in attacked_guarded_squares:
5 if get_piece_centipawn(board, attack_move.to_square, True)
6 >get_piece_centipawn(board, attack_move.from_square, True):
7 threat_moves.append(attack_move)

8 else:
9 threat_moves.append(attack_move)

10
11 return threat_moves

5.2.11 Determine the Number of Threats
Threats—as described in Section 2.1.2—attack either undefended pieces or pieces of
higher centipawn value than the attacking piece. These threats lead to a clear gain of
material. Program 5.12 iterates over a list of attack moves and compares its existence
in a list of attacked guarded squares. If the attacked piece is guarded the centipawn
value of the attacked piece is required to be higher than that of the attacking piece
to count as a threat. If the attack is undefended, it is immediately counted as threat.
This evaluation of threats gives a more complete evaluation of the situation than solely
relying on unopposed threats.

5.2.12 Parameter Definitions
For the chess analysis a broad list of parameters has been implemented to test them
on their usage in a soundtrack. These parameters range from a simple move’s number
to complex fork calculations. The following parameters are implemented within the
program:

• fullmove_number is the number of the current move,
• ply_number is the number of the current half move,
• turn signals the player to make a move, with White being True and Black being

False,
• san is the algebraic notation for the move,
• lan is the long algebraic notation for the move,

5. Implementation 48

• score is the calculated score by Stockfish,
• score_change describes the difference between the scores of the current and pre-

vious move,
• score_change_category takes the score_change and divides it by the average

score_change.
• move_count counts the number of possible moves,
• best_move is the best possible move described in SAN,
• best_move_score is the best move’s score,
• best_move_score_diff is the score difference between the calculated best move

and the actual move,
• best_move_score_diff_category is the category for the calculated difference—

as described in Section 5.2.5,
• is_check determines if the opposed king is checked by the move,
• is_capture determines if the move actually captures a piece,
• is_castling is true if the king has been castled,
• possible_moves_count counts the number of possible moves available in the cur-

rent turn,
• possible_moves_quality analyzes the possible move scores, ranks them and di-

vides the number of score improving moves by the number of possible moves—this
reveals the changes of improving the score in the current player’s favor,

• captures is a list of possible captures,
• is_capture_count is the number of possible captures,
• is_capture_weighted is the weighted centipawn value for a capture—as de-

scribed in Section 5.2.6,
• attackers contains the squares on which the opponent’s pieces reside, that could

capture a piece,
• attackers_count counts the number of attackers,
• attacked_pieces the squares of the pieces attacked by attackers,
• attacked_pieces_count counts the number of attacked pieces,
• guards are the squares on which the pieces reside, that defend attacked pieces,
• guards_count counts the number of guards,
• guarded_pieces are the squares on which the pieces reside, that are defended by

guards,
• guarded_pieces_count counts the number of guarded pieces,
• attacked_guarded_pieces are the squares on which the pieces reside, that are

both attacked, as well as guarded by other pieces.
• attacked_guarded_pieces_count counts the number of threatened_guarded-

_pieces,
• unopposed_threats are the squares on which the residing pieces are threatened

but not defended,
• unopposed_threats_count counts the number of unopposed threats,
• threats_count counts the threats that enable a gain in material,

5. Implementation 49

• forking_pieces are the pieces that attack two or more opponent’s pieces,
• fork_count is the number of forks on the board,
• pin_count is the number of pins,
• skewer_count is the number of skewers,
• attackers_centipawn multiplies attacking pieces with their respective centipawn

value,
• attacked_pieces_centipawn multiplies attacked pieces with their respective cen-

tipawn value,
• guard_centipawn mutliplies guarding pieces with their respective centipawn value,
• guarded_pieces_centipawn multiplies the guarded pieces with their respective

centipawn value,
• attacked_guarded_pieces_centipawn multiplies the attacked_guarded_pie-

ces with their respective centipawn value,
• unopposed_threats_centipawn multiplies the unopposed threats with their re-

spective centipawn value,
• threats_centipawn captures how threatened a player is by their opponent. It

summarizes the centipawn values of the threatened pieces and subtracts the cen-
tipawn value of the least valuable attacker if the threatened piece is defended.
The attacker is only considered when the threatened piece is defended, as only
then it puts itself in the danger of being captured. The least valuable attacker
is substracted because only one attacker can eventually make the capture. This
leads to the definition:

𝑡(𝑚n) =
𝑛∑︁

𝑖=1

⎡⎢⎢⎢⎢⎣
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑣(𝑝ab, i) if 𝑝ab is undefended,
𝑣(𝑝ab, i) − min𝑜

𝑗=1 𝑣(𝑝aa,𝑗) if 𝑝ab is defended
∧ 𝑣(𝑝ab) > 𝑣(𝑝aa),

0 otherwise

⎤⎥⎥⎥⎥⎦ , (5.2)

threats = 𝑡(mw) − 𝑡(mb), (5.3)

here 𝑡() is the function to calculate the centipawn value for the threats. 𝑚𝑛 are
the attacking moves, 𝑣() is the function to retrieve a piece’s centipawn value, 𝑝aa
is an attacker piece, 𝑝ab is an attacked piece. threats is the centipawn result for
the calculation, mw are White’s attack moves, while mb are Black’s attack moves.

• attack_defense_relation determines every piece involved in an attack and uses
their centipawn value to calculate the relation to each other. An attack involves
the attacked piece, its attackers, as well as its guards. Attackers and guards are
included per attacked piece, which means a piece can be considered more than
once. A guarding piece that defends two attacked pieces is taken into account
two times. Therefore, the metric rewards effective piece placement. The metric is
defined as follows:

ad(𝑚n) =
𝑛∑︁

𝑖=1

⎡⎣𝑣(𝑝gb, i) +
𝑜∑︁

𝑗=1
𝑣(𝑝ga, j) − 𝑣(𝑝ab, i) −

𝑝∑︁
𝑘=1

𝑣(𝑝aa, k)

⎤⎦ , (5.4)

attack/defense = ad(mw) − ad(mb), (5.5)

5. Implementation 50

here 𝑎𝑑() is the function to calculate the attack/defense relation to a centipawn
value. 𝑚𝑛 are the attacking moves, 𝑣() is the function to retrieve the piece’s
centipawn value, 𝑝aa is an attacker piece, 𝑝ab is an attacked piece, 𝑝ga is a guard
piece and 𝑝gb is a guarded piece. attack/defense calculates the centipawn result
and compares the relations of both White and Black to another. mw are White’s
attack moves, while mb are Black’s attack moves.

• material compares the remaining chess pieces of each player to another—as de-
scribed in Section 2.1.5. The metric is calculated by using the pieces’ centipawn
values and is defined as:

m = (𝑃𝑤−𝑃𝑏)+300(𝑁𝑤−𝑁𝑏)+300(𝐵𝑤−𝐵𝑏)+500(𝑅𝑤−𝑅𝑏)+900(𝑄𝑤−𝑄𝑏), (5.6)

whereas 𝑃𝑤, 𝑁𝑤, 𝐵𝑤, 𝑅𝑤 and 𝑄𝑤 are the number of remaining white pawns,
knights, bishops, rooks and queens, respectively [28]. Black pieces are annotated
with the letter 𝑏, e.g., 𝑃𝑏.

• pawnending checks if only kings and pawns are left on the board,
• rookending checks if only kings, rooks and possible pawns are left on the board.

The 24 parameters from the list ranging from attackers to threats_centipawn are
stored for both the white and black player with the postfixes _white and _black. This
allows to have the data available for both players at any time.

Additionally, these parameters sum up the respective black and white parameters
and therefore give easy access to the complete situation on the board independent of
the individual players:

• attackers_count_all,
• attacked_pieces_count_all,
• guards_count_all,
• guarded_pieces_count_all,
• attacked_guarded_pieces_count_all,
• unopposed_threats_count_all,
• threats_count_all,
• fork_count_all,
• pin_count_all,
• skewer_count_all,
• attacked_pieces_centipawn_all,
• guarded_pieces_centipawn_all,
• attacked_guarded_pieces_centipawn_all,
• unopposed_threats_centipawn_all.

threats_centipawn_all subtracts their White and Black values to provide a compar-
ison between the player’s threat situation.

Many of the discussed parameters are required to calculate the metrics utilized by
the soundtrack. Nonetheless, each parameter is stored separately for an easier adaption
of the soundtrack without necessarily adapting the analysis program.

5. Implementation 51

Figure 5.3: FMOD timeline depicts the setup of the destination markers and transition
markers.

5.3 Details on the FMOD Studio Event
The FMOD Studio event is designed to be enjoyable for longer periods of time, as chess
games can last between a few minutes to over an hour. For this reason melodies and
rhythm has been omitted from the soundtrack design—as mentioned in Section 4.4.

The event’s timeline—as shown in Figure 5.3—is constructed as follows: The start
destination marker tags the beginning of the soundtrack at second 0, the loop destina-
tion marker marks the beginning of the main sound loop at second 4 and ends with a
transition marker at second 26 back to the loop. When the chess game has ended the
playback position leaves the main loop and plays the last seconds of the samples until
it reaches the end destination marker at second 58 which loops back to the end marker
when its transition marker is reached at second 62. The end loop goes on indefinitely,
except the user goes back a couple of moves, in which the end loop is left again only
to reach a transition marker at second 64 to lead back to the start of the soundtrack.
The game_phase parameter determines which of the two loops are being played. The
parameters values range from 0.0 to +1.0 and values between 0.0 to +0.5 activates the
main loop, while values between +0.51 and +1.0 activate the end loop.

The soundtrack has five base layers with notes ranging from a low d3 to a higher a#4,
as described in Section 4.4.2. The five notes are evenly spaces fourths. The fluctuating-
_score parameter has a value range of −1.0 to +1.0 and it determines which of the base
layers is played. The base layers volume control is automated in such a way that the
specific layers volume only increases when the fluctuating_score reached a certain
range. Each note has a highest volume range of 25, except for d3 and a#4 which are
positioned on the extremes—meaning 0.0 and +1.0. Those two notes have a range of
12.5. This leads to a smooth transition between the notes when needed.

The distribution is also beneficial when looping between the notes. The constant
transitioning between the notes comes into play when the change in Stockfish’s evalua-

5. Implementation 52

tion between the previous and the current move is above the average score change. Con-
sequently, the fluctuating_score can then be continuously increased and decreased
to transition between the desired notes back and forth.

The effect for unopposed threats consists of six layers each a chromatic step above
the layer before. The number of audible threat layers increases equally to the unop-
posed_threats parameter which has a value range between 0.0 and +10.0. The more
threats are on the chess board, the more threat layers are activated and more disso-
nances are created. The dissonances should convey a feeling of unease and clearly state
that something is wrong in the current situation.

Blunders, mistakes and inaccuracies are mapped to their own layers and parameters
mistake4, mistake3 and mistake2, respectively. The parameters value range is between
0.0 and +1.0. The layers have a volume automation, in which the automation’s curve
slowly rises to 4.00 dB at a parameter value of +0.5 and then maintains the volume until
it dramatically drops before it reaches +1.0. For the effect one of the mistake parameters
is set to +1.0 and the parameter immediately starts decreasing its value continuously,
until it reaches 0.0 again. This leads to the volume automation curve being played in
reverse, as one of mistake parameters is changed to +1.0 its corresponding layer’s audio
sample is almost immediately audible due to the sharp increase in volume. After that
it maintains the volume for a few seconds before it slowly fades out again.

possibe_moves maps to the possible moves of the current player. Its value ranges
from 0.0 to +100.0. When the possible moves are lower than +5.0 a low-pass filter is
activated to dampen the sound. It signals the player that they do not have many moves
at their disposal and their situation is probably very critical.

The base layers’ outputs are not directly connected to the master output, but to
the Attack/Defense Submix. The submix is utilized by the two parameters is_capture
and attack_defense. is_capture controls a similar automation curve as the mistake
parameters, but it controls a distortion effect, which is activated when the parameter is
set to +1.0 and then slowly decreases its value to fade the effect out.

As the attack/defense relation gives an evaluation of which player has the better
setup of possible attacks and guarding pieces the corresponding attack_defense pa-
rameter pans the audio output of the Attack/Defense Submix between the left and right
channel. A positive parameter value emphasizes the right channel, while a negative value
moves the base sounds to the left channel.

Lastly, the chime parameter activates a short beat whenever an effect has changed.
The parameter ranges between 0.0 to +1000.0 and its sound is a nested event positioned
at +900.0. Whenever the parameter is set to +900.0 the audio sample is played a single
time. The sample only contains one beat for signifying a change in the scenery.

5.4 Details on the Chess Music Tool

5.4.1 Loading a Game into Chess Music Tool
In Program 5.13 the context switched from the Chess Analysis Tool to the C++ Chess
Music Tool program. As a first step it is necessary to read in the CSV file produced by
Chess Analysis Tool. On start up the program opens a dialog and requires the user to
select a game’s folder. A game includes a game.csv file and a images folder containing

5. Implementation 53

Program 5.13: Load CSV file.

1 QString folder = "";
2 while (folder == "") {
3 folder = QFileDialog::getExistingDirectory(this, tr("Open Game folder"), ".");
4 }
5 CSVReader reader(folder.toStdString());
6 m_game = reader.loadGame();

Program 5.14: Load FMOD bank and event.

1 FMOD::Studio::Bank* musicBank = NULL;
2 FMOD_RESULT result = system->loadBankFile(
3 Common_MediaPath("Chess.bank"),
4 FMOD_STUDIO_LOAD_BANK_NORMAL,
5 &musicBank);
6
7 FMOD::Studio::EventDescription* eventDescription = NULL;
8 ERRCHECK(system->getEvent("event:/Soundscape 2", &eventDescription));
9

10 FMOD::Studio::EventInstance* eventInstance = NULL;
11 ERRCHECK(eventDescription->createInstance(&eventInstance));

a SVG file for every move. The SVG file’s names are ascending numbers starting with
0. The CSVReader loads the game and creates a Game object. The Game object m_game
stores the parameters of every move in a separate move list.

5.4.2 Load FMOD Bank
A bank stores the events defined in FMOD Studio. Every event contains their assets,
effects, their arrangement, as well as the exposable parameters. The bank is the essential
part to enable the program to play the desired sounds. Therefore, the Chess.bank is
loaded into the program, as seen in Program 5.14. The Chess Music Tool utilizes the
Soundscape 2 event from the bank and an event instance is required to manipulate the
soundtrack.

5.4.3 Initialize FMOD Parameters
The parameters defined in FMOD Studio can directly be manipulated by using the
FMOD Studio API. Every time the parameter has to be changed the event instance’s
setParameterValue() method must be invoked. The first parameter of the method is
the parameter’s name in FMOD Studio as a string. The second parameter is the float
value ranging from the—in FMOD Studio defined—value range. The Program 5.15
defines the initial value for the possible moves parameter in FMOD to be 20—as are
the number of moves available to a player when a chess game begins.

5. Implementation 54

Program 5.15: Set initial FMOD parameters.

1 m_fmod_possibleMoves = 20.0f;
2 ERRCHECK(m_eventInstance->setParameterValue(POSSIBLE_MOVES_STR, m_fmod_possibleMoves

));

5.4.4 Fluctuating Score
The function fmodLoop, described in Program 5.16, controls the behaviour of the fluc-
tuating score for the FMOD event. The function is run in its own thread and therefore
the parameter can be updated continuously. The variable m_fmod_fluctuating_score
gradually increases from 0 to 1 by a step of 0.01 for every 150 ms. When 1 is reached,
it decreases to 0 at which point it starts increasing again. m_fluctuatingScore is set
to true when score_shift_category is greater than 1.0 and therefore enables the fluc-
tuating effect. m_fmod_fluctuating_score is increased or decreased depending on the
boolean evaluation of m_waveDirection.

If the score_shift_category is lower than 1.0 the score is not fluctuating and
therefore the loop plays the same base note for as long the score is not significantly
changed. Then the score itself determines which note is to be played. The conversion of
the score to the FMOD parameter’s value range is achieved by calculating score/1000−
0.5. This results in the score being converted into a range between −1.0 and 0.0. Scores
between −100 (−0.6) and +100 (−0.4) centipawn activate the neutral note of c4. A
score between −300 (−0.8) and −100 (−0.6) activates the deeper note g3 to signal a
black player’s advantage. Scores lower than −300 (−0.2) centipawn activate the even
deeper note d3. In the opposite direction a score between +100 (−0.4) and +300 (−0.2)
centipawn activate a higher f4 note associated with a white player’s advantage and a
score over +300 (−0.2) centipawn activates the highest note of a#4.

The thread is started at startup of the program and continues to loop until the
program is terminated. Every time a move is played the m_fluctuatingScore variable
gets updated and the fluctuation effect is changed if the new value fits into other criteria.
The threat running the fmodLoop function is initialized as described in Program 5.17.

5.5 Summary
The Chess Analysis Tool conducts an in-depth analysis on a broad set of chess param-
eters. It generates a CSV file for the usage in the soundtrack, as well as a database
for an in-depth parameter evaluation for Chapter 6. The FMOD Studio event sets up
a dynamic soundscape and exposes the according parameters—as the sound design de-
fined it in Section 4.4—through the FMOD Studio API. The Chess Music Tool in turn
consumes the FMOD Studio event and depicts a visual representation of the board and
the parameters in a GUI. Additionally, the GUI offers the required controls to traverse
a whole chess game.

5. Implementation 55

Program 5.16: Function fmodLoop.

1 void FMODSoundscapeController::fmodLoop(QString name) {
2 while (true) {
3 if (m_aborted) return;
4 if (m_fluctuatingScore) {
5 if (m_fmod_fluctuating_score >= 1.0 || m_fmod_fluctuating_score <= 0)
6 m_waveDiretion = !m_waveDirection;
7 if (m_waveDirection)
8 m_fmod_fluctuating_score += 0.01;
9 else

10 m_fmod_fluctuating_score -= 0.01;
11 }
12 else {
13 if (m_score < -400)
14 m_fmod_fluctuating_score = -0.9;
15 else if (m_score > 400)
16 m_fmod_fluctuating_score = -0.1;
17 else
18 m_fmod_fluctuating_score = (m_score / 1000) - 0.5;
19 }
20 ERRCHECK(m_eventInstance->setParameterValue(FLUCTUATING_SCORE_STR,

m_fmod_fluctuating_score));
21
22 ERRCHECK(m_system->update());
23 QThread::msleep(150);
24 }
25 }

Program 5.17: Looping through a chess game.

1 QFuture<void> fluctuating_thread = QtConcurrent::run(this, &FMODSoundscapeController
::fmodLoop, QString("A"));

Chapter 6

Evaluation

After Chapter 4 provided a detail description of the concept behind a data-driven sound-
track offering context on chess moves for inexperienced players and Chapter 5 examined
concrete implementation details for the soundtrack, this chapter evaluates the design
in four different evaluations. Firstly, in the heuristic evaluation three evaluators iden-
tify usability problems of the soundtrack’s implementation. The chess metric ranking
asks the evaluators to assess the metrics’ suitability in the context of providing use-
ful information for inexperienced chess players. The chess metric evaluation visualizes
the metrics utilized in the second soundtrack design. Lastly, the real-time evaluation
determines the metrics usefulness in a real-time context.

6.1 Heuristic Evaluation

Heuristic evaluation [21, Ch. 5] is a usability engineering method for identifying usabil-
ity problems in an user interface. The evaluation defines a set of rules (heuristics), which
the user interface is required to comply. A limited number of evaluators test the user
interface for violations of the heuristics. These usability issues—referencing the violated
heuristic—are collected from the different evaluators and compiled into a list. The is-
sue list provides the developers with concrete starting points to implement solutions
resolving the violations. The project for the thesis refrains from evaluating its graphical
user interface, instead the soundtrack is evaluated, as the audio component conveys the
information to the chess players. The Chess Music Tool’s user interface is used in the
heuristic evaluation to provide the evaluators the necessary context for the soundtrack,
as already played chess games are used for the evaluation and therefore the evaluators
need visual aid to see the chess moves.

6.1.1 Method
Heuristic evaluations utilize the knowledge of domain experts to evaluate an user in-
terface [58]. This process does not require a fully implemented program or prototype,
but the prototype can even consist of paper mock-ups, because the heuristic evaluation
method rather evaluates concepts than a concrete implementation. The heuristics used
in an evaluation are a list of principles adjusted for the use case. Nielson suggests to
invite three to five evaluators to inspect the interface [58]. Nielson conducted a series of

56

6. Evaluation 57

Figure 6.1: A curve comparing the number of evaluators to the proportion of usability
problems found [39].

heuristic evaluations on six projects and concluded that a single evaluator can identify
around 35 percent of usability problems [21]. Evaluators tend to find different problems
and therefore complement each other. Three evaluators provide a valid evaluation and
five evaluators a more complete picture. Figure 6.1 displays a curve of the efficiency
for the number of different evaluators involved in a heuristic evaluation. The number of
evaluators can be changed depending on the necessity of finding as many problems as
possible or the cost. Experts in the evaluated domain tend to find more problems and
consequently are beneficial for a successful evaluation.

The evaluation of the user interface is usually performed alone by an evaluator with
the exception of an observer providing necessary information and taking notes during
the evaluation. It is important not to have two evaluators inspecting the user interface
in the same room simultaneously, as they influence each others thought process. During
the evaluation the user interface is inspected mulitple times. The first time to get the
evaluator acquainted to the user interface. After the user is familiar with the interface,
further inspections aim to find usability issues. Evaluators use the list of heuristics
to identify the concrete problems. The observer usually writes down the discovered
usability issues. Additionally, evaluators can ask observers questions about the user
interface for clarification. After every evaluation is completed, evaluators can gather
together for a debriefing to discuss their findings and brainstorm possible solutions to
the problems.

Next, a complete list of the usability problems is created and the evaluators are
asked to rate them for the problem’s severity [20]. The severity ranges from zero to
four, zero being no problem and four a usability catastrophe. If an independent view
on the problems is desired, the debriefing session should not be conducted yet, as it
can change an evaluator’s opinion on the issue. Asking only one evaluator to rate the
issues does not provide a reliable rating. More effective is a rating by at least three or

6. Evaluation 58

all of the involved evaluators and subsequently calculate the mean rating for the issues.
The mean provides a reliable assessment of the issues. Lastly, the list of issues can be
ordered by the mean severity rating to determine which issues are to be resolved first.

6.1.2 Adjusted Approach
For the evaluation a list of heuristics is derived from multiple pre-existing lists [19,
pp. 156–158; 15, Ch. 7; 12, Appx. A]. The heuristics are heavily altered and new heuris-
tics are added to fit the use case, because the original lists are designed for user interfaces
or video games, but not for soundtracks directly. This results in a list of the nine heuris-
tics specified in Table 6.1. The heuristics range from chess-related principles, such as the
correct use of terminology or the chess metrics validity and significance, to soundtrack-
related heuristics, such as the audio being able to convey semantics to the listeners. The
heuristics for the soundtrack either solely focus on the sounds and audio effects or the
heuristics discuss the soundtracks relation to the chess game.

Three experienced amateur chess players1 have been invited to take part in the
heuristic evaluation. Two of them have an additional programming background and one
even knowledge in sound design. The evaluations took place on several separate occa-
sions in cafés in Linz or Hagenberg. After a brief introduction between the observer
and evaluator, the thesis’ concept and soundtrack design was presented. Next, the list
of heuristics was explained to the evaluators, enabling them to already look out for the
aspects in question. The evaluators could inspect the soundtrack for two predetermined
chess games. After one or two program walkthroughs the evaluators gave feedback to
the chess metrics and the sound design. For the purpose of gathering the feedback into a
document, the audio of the evaluation sessions was recorded. Subsequently, those record-
ings were transcribed and a list of issues was compiled. Following the last evaluation,
the complete list of issues was sent out to the evaluators via email for rating the issues’
severities. All three evaluators rated the issues, thus a reliable mean rating could be
calculated.

The mean severity rating suggests which issues should resolved first. The severity
rating is constructed similarly to the definition by Nielsen [20, 59]—a scale ranging from
zero to four:
0 = Not a problem: The issue is not a problem at all.
1 = Negligible problem: The issue does not impact the experience. There is no need

to fix this issue unless extra time is available.
2 = Minor problem: The issue has a small impact and fixing this should be given a

low priority.
3 = Major problem: The issue has a strong impact and is important to fix, so it

should be given high a priority.
4 = Catastrophe: The issue is must be fixed, before the program can be used.

1The chess players do not compete professionally, but have profound knowledge of chess, play in
clubs or compete in amateur tournaments.

6. Evaluation 59

No. Title Description
1 Terminology of metrics

is understandable for
chess players.

The terminology used in the program is compre-
hensible for chess players. The terminology is com-
monly known by chess players.

2 Metrics are significant
and valid.

The chess parameters presented in the program
are useful and valid and therefore can be consid-
ered for the program.

3 The audio itself conveys
a certain meaning.

When the sounds are considered detached from
the game, they still have a meaning. The sounds
create different atmospheres, e.g., alarming, sus-
penseful, mysterious, eerie, bustling, energetic, dy-
namic, uncomfortable, warm, welcoming, inviting.

4 The audio effects reflect
the chess game and its
defined metrics.

As a chess game is played through step by step,
the soundtrack reacts to the metrics accordingly.
The audio effects are fitting for the metric which
triggers them.

5 The audio effects can be
distinguished from an-
other.

The user can recognize the audio effects even when
triggered simultaneously. The effects are unique
enough to be perceived as distinct effects.

6 The audio representa-
tion creates suspense
when required (Arc of
suspense, Spannungsbo-
gen).

As a game progresses, thrilling and exciting situ-
ations occur. The soundtrack is designed in a way
to create suspension when a critical moment takes
place and relaxes when this is resolved.

7 The audio is enjoyable
to replay.

The soundtrack retains its pleasing listening ex-
perience over the course of multiple games.

8 Audio representation
supports the game.

The soundtrack retains its pleasing listening ex-
perience over the course of multiple games.

9 The sound design elicits
a fitting emotional re-
sponse.

The sounds trigger an expected feeling or atmo-
sphere to the situations presented in the chess
games.

Table 6.1: The list of heuristics used for the heuristic evaluation.

6.1.3 Result
The result of the heuristic evaluation is a list of twelve issues associated to the heuristics,
discovered and rated for their severity by the three evaluators. The mean severity ratings
are decimal numbers and for their concrete assignment to a severity category the mean
ratings are either rounded up or down. Consequently, three of the problems are negligible
as their rounded mean severity rating suggests. Three issues are minor problems, five
are major problems and one issue is a catastrophe. The issues are described in the
following list, ranked by their mean severity rating in an descending order. In addition

6. Evaluation 60

to the quoted severity rating, the issue also references the heuristic it violates. S.r. and
h. are abbreviations for the severity rating and heuristics, respectively. The issues are
as follows:
3.67 s.r. / 5th h.: As the base tone is ever present, additional tones and sound effects

are drowned out as the game progresses. Therefore, the effects lose their weight
associated to them and aimed semantics cannot be transported as intended by the
soundtrack’s design. To solve this problem the base notes’ volume can be lowered
or the base notes are not always present. This should lead to an reduction of the
noise level and a better recognition of the reactionary metrics, such as mistakes
or captures.

3.33 s.r. / 4th h.: The chess metrics causing the different sound effects cannot be iden-
tified. Players have no possibility to match tones and sound effects to the actual
chess metrics and its context remains unclear to the players. To tackle this problem
a calibration phase can be introduced, in which the different sounds and effects are
implicitly explained. At the beginning of the game fundamental tones and sound
effects such as high notes for a leading white player can be activated whenever
white is to move. This can lead a player to associate the corresponding tone to
themselves. As the game progresses additional tones and effects can be added. An-
other approach can be to introduce different modes to the soundtrack that work
with fewer metrics, resulting in easier identifiable context behind the sounds and
effects.

3.33 s.r. / 5th h.: As a chess game progresses more tones and sound effects are added
to the soundscape, resulting in an increase in volume but at the same time hamper
the ability to perceive the individual effects and their associated metrics. The
soundscape could focus on the most critical metric and depict it more prominent,
but the determination of the most critical metric in a given situation seems not
to be easily achievable.

3.33 s.r. / 8th h.: The soundtrack appears flat and conveys little information. As the
soundtrack mostly works with increasing and decreasing the volume of different
notes, it appears to be rather static and the changes in the metrics are not trans-
ported to the listener as intended. The base notes suggesting the leading player
are not broad enough and therefore the low notes of a decisively leading black
player are still to near to the neutral base note. The solution to this problem is to
fine-tune the soundtrack over many iterations until a satisfactory dynamic range
is reached.

3.00 s.r. / 6th h.: Suspenseful situations can be perceived through the soundtrack, but
do not occur at the appropriate move or in the correct intensity. The suspense is
created by dissonances in the soundtrack and those dissonances are mapped to
the number of unopposed threats. Unopposed threats can be adjusted to include
defended threats to capture a more complete situation on the board. Additionally
the score evaluation can be incorporated into the effect. Dissonances can then be
activated as the score diverges more to the extremes.

2.67 s.r. / 2nd h.: Unopposed threats do not capture the entirety of possible threats.
Defended pieces can also be threatened and these threats can be as critical for
the game as undefended threats. As suggested in the previous issue, the inclusion

6. Evaluation 61

of defended threats can provide better context. Forks, pins and skewers are also
threats which cannot be easily ignored by the threatened player and therefore
would enhance the threat evaluation significantly. Nevertheless the use case for the
soundtrack should be considered when expanding the scope of the chess metrics.
The metrics should remain comprehensible to inexperienced chess players.

2.33 s.r. / 2nd h.: Captures and threats do not differentiate between the associated
pieces as the pieces are only counted. Therefore, it is impossible to discern two
different pieces, e.g., a threatened queen or bishop. The two pieces have completely
different values associated to them in chess and a threatened queen must clearly be
more emphasized than a threatened bishop. To solve this problem the centipawn
values of the pieces can be taken into account and therefore regard the weight of
situation.

2.33 s.r. / 2nd h.: Unopposed threats consider the threats of both colors – both white
and black – simultaneously. This makes it hard for players to determine their own
threats from of the soundscape. A solution to this would be to make the metric
player-centric not chessboard-centric. This enables the players to hear their own
unopposed threats instead of from both sides.

1.67 s.r. / 2nd h.: Most metrics such as score, score change and capture only react to
the player’s moves and do not anticipate possible outcomes. A possible new metric
could analyze the possible moves for the current player and anticipate the options
available to the player. Ranking the possible moves by their score can display the
ratio of improving or worsening the player’s current situation and score evaluation.

1.33 s.r. / 3rd h.: The soundtrack does not signal when a chess game ends. An easy
solution is to simply stop after the game’s last move or play distinct ending sounds.

1.00 s.r. / 1st h.: The terminology of parameter “score shift” does not quite fit, as it
captures the change in the score evaluation from move to move. The name of the
parameter can be changed to the more appropriate name “score change”.

1.00 s.r. / 2nd h.: The program only highlights the mistake made by the current move.
Previously made mistakes are completely dismissed. A possible solution would be
to include a history that keeps record of the player’s inaccuracies, mistakes and
blunders. This could help to better capture the course of the game. Nevertheless,
the score evaluation is sufficing as it already captures the situation as a whole.

The issues and their proposed solutions are useful for further developments of the
soundtrack. They point out if the sound design’s metrics provide the necessary infor-
mation to convey the semantic content behind any given situation for an inexperienced
player, as well as how a soundscape can be modified to be better suited for chess game
dynamics.

Besides the heuristic evaluations, a lot of chess metrics were discussed and suggested
to be used by the program during the evaluation meetings. The proposed metrics as well
as the already implemented metrics are compiled to a list and ranked by the evaluators
for their suitability in thesis’ use case. The metric ranking is discussed in the next
Section 6.2.

6. Evaluation 62

6.1.4 General Feedback
Furthermore, general feedback regarding the project and implementation was provided
by the evaluators. The feedback suggests that the soundscape is the right approach for a
sonification of chess. The soundscape sounds pleasant and is enjoyable over longer peri-
ods of time. The soundtrack can translate exciting moves from the chessboard to audio,
but the sound effect’s meaning remains concealed. Nevertheless, the effects are able to
raise the player’s attention to specific moves, despite the lack of concrete information.
An explanation of the sound effects meaning can lead a player to be able to differentiate
the sound effects from each other. Alternatively, a calibration of sound effects during the
first few moves of a game could solve the problem of the sound effects hidden meaning.
There is a lack in dynamics as the soundscape mostly remains the same throughout a
game. Nevertheless, the soundscape can elicit a feeling of alertness as threats are on the
board. The metrics utilized in the sound design are suitable for inexperienced players,
but fail to capture the big picture in the game. The evaluators emphasize the impor-
tance of threats on the board. The threats determine the danger in a given situation.
Therefore the soundtrack should capture not only unopposed threats, but also defended
threats, pins, skewers and forsk. In the end the evaluation and feedback suggests that
the soundtrack has much potential and the concept behind the soundtrack is worth
pursuing.

6.2 Chess Metric Ranking
While the heuristic evaluation in Section 6.1 evaluated the soundtrack’s issues and their
severity, this evaluation asked the evaluators to rank the existing metrics in addition
to their own suggested metrics. The aim in rating the metrics is to determine the best
suitable metrics for conveying the current situation on the chessboard for inexperienced
players, including fundamental metrics for learning chess—whether by signalling the
leading player or threats are on board. This evaluation helps to determine and incor-
porate the most promising metrics—yielding relevant and understandable information
for beginners—into the soundtrack. For this purpose, the evaluators give each metric
a rating. The rating is defined by a linear scale, where 1 is a metric not suitable for
beginners and 7 is a fundamental metric, which provides much needed context for in-
experienced players. The steps are a fluent transition between the two extremes. Every
metric is rated based on the following statement: The metric is essential for conveying
fundamental information of a move or situation on the chessboard for inexperienced
chess players.

The final rating for a metric is calculated by taking the mean of the individual
evaluator ratings. The evaluated metrics are either described in Section 2.1 or in Sec-
tion 5.2.12. The Table 6.2 lists the evaluated metrics by the rating in descending order.
In regard of the metrics utilized by the second soundtrack design, it becomes appar-
ent that four of the soundtrack’s metrics are placed within the top five places in the
list—score change, score, mistake and unopposed threats. Is capture and attack/defense
relation get a rating of 4.33 and 4.00, placing them midfield. The number of possible
moves receives a rating of 2.67 taking the 27th place in a list of 37 evaluated metrics.
This ranking demonstrates that the sound design already utilizes important and useful

6. Evaluation 63

Metric Rating Metric Rating
Score change 7.00 Material 4.00
Score 6.33 Impact field 4.00
Mistake 6.33 Is capture weighted 3.67
Threats centipawn 6.33 Impact weight 3.67
Unopposed threats 6.00 Half/fully open files 3.67
Fork 6.00 Mobility 3.33
Pin 6.00 Imbalances 3.00
Imminent mate threat 6.00 No. possible moves 2.67
Skewer 5.67 No. possible captures 2.67
Development 5.67 Attackers 2.67
King safety 5.33 Guards 2.67
Pawn structure 5.33 Guarded pieces 2.67
Is check 5.00 Guarded threats 2.67
Possible moves quality 5.00 Clock/time 2.67
Initiative 5.00 Openings 2.33
Best move 4.33 King-/Queenside play 2.33
Is capture 4.33 Move repetition 2.33
Attacked pieces 4.33 Is castling 1.67
Attack/defense relation 4.00

Table 6.2: The list of ranked metrics in descending order.

metrics for inexperienced chess players. Furthermore, the list provides new and useful
metrics for a possible future sound design.

6.3 Chess Metric Evaluation
The chess metric evaluation visualizes metrics used by the second sound design, as well
as metrics deemed to be valuable by the evaluators from the heuristic evaluation. The
graphs focus on the distribution of values or a metric’s development over the course of
chess games. The evaluation uses 989 chess games retrieved from the chess server Lichess.
The Bulk Analysis program processes those 989 chess games and stores the analyzed
metrics into a database. This database is the foundation for the metric evaluation as
graphs are generated. The graphs are written in Python by using the data visualization
tools matplotlib2 and seaborn3.

All 989 chess games are online matches between two people played on the chess
platform Lichess and took place on 31 Dezember 2018. The players’ strengths range
from an Elo rating of 800 to 2610, while the mean Elo rating for white players and
black players is 1550 and 1556, respectively. This ranks the average player of the data
set above beginners and below professional players. The two distribution graphs in
Figure 6.2 display the length distribution of the 989 games. The shortest game is 2

2https://matplotlib.org/
3https://seaborn.pydata.org/

https://matplotlib.org/
https://seaborn.pydata.org/

6. Evaluation 64

0 100 200

ply

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

(a) including outliers

0 100 200

ply

(b) excluding outliers

Figure 6.2: Distribution of games according to their length, (a) includes outliers, while
(b) excludes outliers.

plies, while the longest game takes 187 plies to complete. The original data includes
games that are uncommonly long, as displayed in Figure 6.2 (a). After removing the
outliers the games are reduced from the original 989 to 968 and their length ranges
from 2 to 133 plies. The graph in Figure 6.2 (b) depicts a more compact distribution of
games according to their length and therefore enable the following graphs to be more
comprehensible. The graphs will only consider moves up to the 133th ply, as games
longer than 133 plies are outliers. 50 percent of the cleaned games are between 43 and
78 plies long.

6.3.1 Score and Score Change
The line graph in Figure 6.3 depicts the mean development of the score and score change,
while the count of plies gives a hint on how many games the mean score and score change
are derived from as the games progress. The average score change between the current
and the previous move begins at 76.51 centipawn after the first two plies. In opening
phase the score alternates for every ply as the players make their moves and change the
evaluation. The change itself steadily increases by a small amount until ply 51 when it
increased from the initial 76.51 to 303.75 centipawn. From this point onwards, the score
abandons the pattern of alternating the score up and down by a predictable centipawn
value, but begins to change its value randomly. The score seems to favour the white
player during the first 51 plies, but as the games progress the mean score converges
to the extremes in both directions. The score’s change in pattern can be explained
by the players acquiring significant advantages as their individual games progress and
the number of games available for analysis drops with increasing plies. The loss in
available games amplifies the extreme score evaluations. The outliers in the score and
score change are not removed as the outliers demonstrate the variance of advantages

6. Evaluation 65

0 20 40 60 80 100 120

ply

−1500

−1000

−500

0

500

1000

ce
n
ti

p
aw

n
/
n

o.
of

p
li

es

score

score change

no. of plies

Figure 6.3: A comparison between the score and score change mean development in
chess games.

a player can achieve within a game. Even though the mean score uses a predictable
pattern in the opening phase, it develops a more chaotic behaviour towards the end.
For the inclusion of the soundtrack this behaviour is highly interesting as it promises
a diverse progression of individual games. The score does not develop the same way in
games. The score change can determine a move’s impact on the game. Therefore the
median of all score change values is calculated which is 64 centipawn. This threshold can
be utilized to determine a move’s importance to the game and instruct the soundtrack
to signal the moves significance when the threshold is exceeded by a move.

6.3.2 Threats
The line graph in Figure 6.4 compares the average development of the different kinds
of threats over the course of the evaluated games. For this analysis the mean number of
threats is calculated for total number of threats, unopposed threats, defended threats,
pins, skewers and forks. The threats are calculated as defined in Section 5.2.11. Pins,
skewers and forks have their own definition not directly dependant on the threats.
Nevertheless, pins, skewers and forks are important to force the opponent to react and
therefore are a threat in the context of the chess game, but not strictly in the sense of
the threat definition in this thesis. This fact makes it possible for the number pins and
skewers being higher than the total number of threats at certain plies. The number of
threats rises steadily until it reaches its peak in the middle game. As the game progresses
into the end game the number of threats significantly decreases. The unopposed threats
make up most of the total number of threats, as unopposed threats are more easily
achievable compared to defended threats. Defended threats are more relevant in the
opening phase, as the number of pieces on the board is high. Between ply 20 and 50 the
defended threats retain the same level of occurrence, while the number of unopposed

6. Evaluation 66

0 20 40 60 80 100 120

plies

0.0

0.2

0.4

0.6

0.8

1.0

1.2

n
o.

o
f

th
re

at
s

total

unopposed

defended

pin

skewer

fork

Figure 6.4: A comparison between the total number of threats, unopposed threats,
defended threats, pins, skewers and forks and their mean development in chess games.

threats still rises. After ply 50 the undefended threats steadily decrease and converge
to zero. The number of pins shares a similar curve to skewers. Both increase sharply
in the beginning of the game and hit their peak between ply 20 and 40, after which
both values steadily decrease. Forks do not occur often in any phase of the game, but
are always relevant, because if a player creates a fork the player is almost guaranteed
a capture. From the graph can be concluded that a player can build up threats in any
game phase. Defended threats do not occur often in the end game for the lack of available
defenders. Pins, skewers and forks also do not play a huge role in the end game. Despite
the improbability of pins, skewers and forks appearing in the end game, they cannot be
ignored as the three kinds of threats threaten multiple pieces at once and every piece
needs to be preserved in the end game.

6.3.3 Mistakes
Blunders, mistakes and inaccuracies can often worsen the situation for a player sig-
nificantly and those moves can be a decisive factor in a game. For this reason, the
occurrence of those poor moves is interesting to analyze. First, the outliers need to be
removed as a difference between the best possible move and the actual move of over
10.000 centipawn seems large to be taken into consideration. Before removing the out-
liers the values range from 0 to 15.320 centipawn and after that the adjusted values
range from 0 to 215 centipawn, which drastically reduces the range of values. The box

6. Evaluation 67

0 5000 10000 15000

centipawn

(a) including outliers

0 50 100 150 200

centipawn

(b) excluding outliers

Figure 6.5: The distribution of difference between the best move’s score and the actual
score.

plot in Figure 6.5 (a) illustrates why the outlies have been removed, 50 percent of the
values are contained within 8 and 91 centipawn and therefore rendering most values un-
recognizable on an x-axis ranging up to 16.000 centipawn. The box plot in Figure 6.5 (b)
on the other hand depicts the adjusted values within a range of 215 centipawn, which
results in a balanced distribution of mistakes.

Only games of similar length are considered for an occurrence comparison of the
different types of mistakes in Figure 6.6. This analysis shows when the different moves
occur in the game and when each category is most relevant. The 151 games utilized
for the mistake analysis have a length of 80 to 100 plies. This measure prevents shorter
games from distorting the distribution, as games of lower length only contain mistakes
at a lower ply number. For this analysis four different graphs are generated as kernel
density estimation (KDE), each for another type of move (normal move, inaccuracy,
mistake and blunder). The moves are categorized according to the Lichess definition
as described in Section 4.3.7. According to the graph in Figure 6.6 (a), most normal
moves occur throughout the whole game but become concentrated towards the end
game and most of the normal moves have a centipawn value between 0 and 10. In Fig-
ure 6.6 (b) inaccuracies appear from the beginning of the game until their decline either
before the middle game ends or at the beginning of the end game. The inaccuracies’
centipawn values are evenly spread throughout the game, but concentrate at around
60 centipawn. Mistakes, as depicted in Figure 6.6 (c), most likely appear throughout
the middle game, but also occur in the opening and end game. Most mistakes have a
value ranging between 100 and 150 centipawn. Lastly, blunders do not immediately oc-
cur in the beginning but concentrate more throughout the middle game and end game,
as displayed in Figure 6.6 (d). While games approach the end game blunders become
more severe, as the broadening of the graph shows. Whereas at the beginning of games
blunders are about 400 centipawn, in the end game blunders range more between 300
and 2000 centipawn. The decline in inaccuracies at the end of games indicates that other
categories occur more frequent, such as normal moves, mistakes or blunders. Therefore
the importance of inaccuracies diminishes as games progress. The general distribution of
move types for the 898 games is the following: 64.28 percent are normal moves, 12.4 per-
cent inaccuracies, 13.1 percent mistakes and 10.22 percent blunders. From the normal
moves 55.5 percent equal the best possible move, according to the Stockfish evaluation.

6. Evaluation 68

0

10

20

30

40

50

ce
n
ti

p
aw

n

(a) Normal moves

40

50

60

70

80

90

100

110

(b) Inaccuracies

0 50 100

ply

100

150

200

250

300

ce
n
ti

p
aw

n

(c) Mistakes

0 50 100

ply

0

500

1000

1500

2000

2500

3000

(d) Blunders

Figure 6.6: Kernel densities for different move categories in games with length ranging
from 80 to 100 plies.

6.3.4 Captures
The line graph in Figure 6.7 displays the probability of a capture for the certain plies
and it shows how the probability for captures develops over all analyzed games. The
number of average captures starts at zero percent, as no piece can be captured within the
first move. The following 20 plies the number of average captures increases drastically
and reaches its peak of 33.96 percent at ply 34. The captures maintain a capture rate
of average 30.9 percent captures starting from ply 20 to ply 54. From ply 54 onwards
the probability of a capture decreases continuously, due to the fact that the number of
remaining pieces diminishes per capture. The probability for captures rises while pieces
are still in development and threats are created and reaches its peak when the game

6. Evaluation 69

0 20 40 60 80 100 120

ply

0.0

0.1

0.2

0.3

ca
p

tu
re

Figure 6.7: A line graph displaying the mean occurrence of captures throughout the
analyzed chess games.

0 20 40 60 80 100 120

ply

10

15

20

25

30

35

n
o.

o
f

le
ga

l
m

ov
es

Figure 6.8: A line graph displaying the mean development of legal moves throughout
the analyzed chess games.

enters the middle game and threats are converted to captures. After the middle game
not many pieces are left to be removed from the board and players try to preserve as
many pieces, while capturing the opponent’s pieces. This leads the decreasing capture
rate during the end game.

6. Evaluation 70

0 10 20 30 40 50 60 70

possible legal moves

0.00

0.01

0.02

0.03

0.04

check

not check

Figure 6.9: A line graph depicting the probability of the number of possible legal moves
occurring in a game, while splitting the moves depending on the king being in check or
not.

6.3.5 Legal Moves
Legal moves are the number of moves available to the players during their turn that
comply the rules of chess. The number of legal moves is also related to the mobility—
as described in Section 2.1.6—and defines how freely a player can move around the
chessboard. Figure 6.8 depicts the mean legal moves available per ply. The number
of legal moves starts for both players at 20 legal moves and increases sharply after
a few moves. From ply 8 to 52 the average number of legal moves is above 30 and
reaches its peak of 36.05 legal moves at ply 21. This peak signals that around ply 21 the
players have developed their pieces and reached their maximum mobility. After that,
pieces are captured, the game enters the middle game and the number of legal moves
gradually decreases until a legal move count below the initial 20 moves is reached at
ply 82 onwards. For the remaining moves the average number of legal moves fluctuates
between 19.55 and 10.02. The number of legal moves can diverge from the mean, as the
minimum is 1 and the maximum 69 legal moves. The overall mean of legal moves is
29.65, while the median is at 32 moves.

Having one legal move generally means that the player is in check, but the player also
can have a larger number of legal moves available, despite their king being in check. The
number of legal moves available to the player when the king is checked ranges between
1 and 11. Figure 6.9 depicts the probabilities of each number of possible legal moves
ranging from 1 to 69. 92.48 percent of all moves do not check the king, meaning 7.52
percent of the analyzed moves do. 50 percent of the values for not checking legal moves
reside between 27 and 38 legal moves, their mean is 31.79 and their median being at
33, while 50 percent of the values for checking legal moves are located between 2 and 5
legal moves, their mean is 3.33 and their median being at 3.

6. Evaluation 71

10 ms 20 ms 50 ms 100 ms 200 ms 500 ms 1000 ms 2000 ms 17 d 20 d

milliseconds and depth

0

50

100

150

200

ce
n
ti

p
aw

n

Figure 6.10: The distribution of score evaluation differences for various time and depth
limits.

6.4 Real-Time Evaluation
The analyzed metrics are undergone a real-time analysis to evaluate their versatility in a
real-time context. The parameters suitable for a live evaluation could be used in a chess
installation. Repeated Bulk Analysis, as discussed in Section 5.1, repeatedly evaluates
the score for the same move five times to generate comparable minimum and maximum
values. The score’s range for each move is then analyzed to determine the best suit-
able input parameters for a narrow mean score. Thus, discover the most reliable input
parameters. Four chess games were used as a data source for Repeated Bulk Analysis,
resulting in 1555 analyzed plies. For each ply nine score evaluation were conducted by
using nine different input parameters. The score evaluations were limited to 10, 20, 50,
100, 200, 500, 1000, and 2000 milliseconds, as well as 17 and 20 depth-levels. The box
plots in Figure 6.10 display the variation created when the score evaluation is limited
by the corresponding input parameter. The mean dispersion of a score evaluation for
10 milliseconds is 34.0 centipawn, while 2 seconds yield a better result of 23.55 centipawn,
as described in Table 6.3. Taking the mean value as well as the standard deviation into
account 2000 milliseconds and 20 depth-level yield the best results. Yet to have a consis-
tently timed evaluation, a time limit is more suitable, because a depth evaluation takes
a different amount of time for each execution. For example the 20 depth-level evalua-
tion’s execution time can range from 1.64 seconds to 6.85 seconds, rendering it highly
unreliable in a real-time context.

Parameters such as the score and best move can only be computed by Stockfish.
Therefore, those two parameters and the parameters derived from score and best move
take at least the amount of time a single evaluation needs. The Stockfish evaluation
dependent parameters are:

• score,

6. Evaluation 72

10 ms 50 ms 100 ms 200 ms 500 ms 1000 ms 2000 ms 17 d 20 d
count 311.00 311.00 311.00 311.00 311.00 311.00 311.00 311.00 311.00
mean 34.00 31.57 32.37 30.91 27.15 25.10 23.55 28.92 24.60
std 23.37 22.47 23.52 19.59 19.44 17.01 17.20 19.15 16.00
min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
25 % 19.00 19.00 19.00 19.50 16.00 14.00 14.00 18.00 15.00
50 % 30.00 30.00 29.00 29.00 24.00 23.00 22.00 26.00 23.00
75 % 45.50 41.00 42.00 41.00 34.00 33.00 30.00 38.00 33.00
max 203.00 193.00 198.00 143.00 163.00 111.00 140.00 143.00 83.00

Table 6.3: Statisical analysis of the score evaluation for the corresponding input param-
eters.

• score_change,
• score_change_category,
• best_move,
• best_move_score,
• best_move_score_diff,
• best_move_score_diff_category and
• possible_moves_quality.

As possible_moves_quality analyzes every legal move for its score, it takes timelimit *
no. of possible moves to compute. Every other parameter can be calculated independent
from a chess engine and without taking up much computation time.

6.5 Summary
The different evaluation methods reveal the strengths and weaknesses of the second
soundtrack design. The issues discovered in the heuristic evaluation indicate that fur-
ther developments are required to create a soundtrack, in which inexperienced players
can understand the game more easily and can properly assess the current situation. The
chess metric evaluation provides a prioritized list of metrics that defines a reasonable
order, in which further metric analysis should be conducted. Furthermore, on the basis
of the real-time analysis can be concluded that every Stockfish dependant metric takes
up at least the time predefined by the evaluation’s limit. Other metrics can be com-
puted immediately, without significant delay. A detailed discussion of the evaluation is
described in Chapter 7.

Chapter 7

Conclusion

This chapter discusses the results from the evaluation, provides insights to further de-
velopments of the soundtrack and summarizes some problems faced during the work on
the thesis, as well as possible improvements to the concept.

7.1 Evaluation Results
The heuristic evaluation sheds light on the issues the current soundtrack implementation
has and provides useful feedback for its improvement. The ranking of metrics for their
versatility in a sonification of chess for inexperienced players provides a useful list of
promising metrics. The chess metric evaluation provides a necessary overview on how
metrics develop throughout chess games and how value ranges for those metrics can be
defined. Finally, the real-time analysis determines how the Stockfish evaluation is best
utilized and what parameters are suited for a real-time analysis of chess games. The
following list provides interesting findings:

• Implementing the soundtrack as a soundscape is a good way to add sounds to
a game of chess as well as to transport a move’s meaning. The soundscape sets
a calming mood that can also elicit a feeling of alertness, when a player is a
dangerous situation. The soundtrack is pleasant to listen to over longer periods of
time precisely because it refrains from using melodies or rhythm.

• Although the soundscape fits the use case, the soundtrack lacks dynamics as it
does not change much throughout the game. The chess metrics are permanently
mapped to specific events and sound effects in the soundtrack. This is one of the
main reasons the base theme of the soundtrack stays the same. The individual
chess games certainly arrange the soundtrack differently based on the metrics
which provides another feel to every game, but overall the soundtrack does not
change much from game to game. To compensate this, the soundtrack could apply
different musical themes determined in the opening phase of the game, or randomly
choose a set of sounds to correspond to the metrics. Additionally, a different set
of metrics could be chosen to change the input.

• The soundtrack mostly utilizes metrics which are suitable for inexperienced play-
ers, but metrics such as unopposed threats should be expanded to also include
defended threats. Pins, skewers and forks are important leverage to gain initiative

73

7. Conclusion 74

and force the opponent to concentrate on defending their own pieces, while the
player can develop more threats. Nevertheless, inexperienced players should not
be overwhelmed with a multitude of complicated metrics but should be guided by
fundamental metrics that a beginner can comprehend and find a solution to the
problems hinted by the soundtrack.

• Defining and implementing a concrete metric is not an easy task, as most metrics
are derived from empirical values and even chess engines have their own varying
implementations for metrics. The chess metric evaluation in Section 6.3 uncovers
the development of some chess metrics and gives information on their relevance:

– The score provides the most complete and objective form of evaluation, as it
is computed by a highly regarded chess engine. Individual chess games vary
so much in their evaluation that the mean score development over all games
cannot provide predictability for the score in the later stages of the game.
Nevertheless, a fact is the score evaluation becomes more extreme as games
progress.

– On the contrary, the median score change provides an important threshold for
the determination of important chess moves, as it can activate the fluctuating
score effect from the second soundtrack design.

– A combination of unopposed and defended threats provide improved context
for the players as defended threats can have significant impact on a game.
The evaluation also provides the information when and how numerous threats
occur in a game. The mean development for the different threat types is useful
to the soundtrack design as the number of expected threats is known for the
individual game phases now.

– Inaccuracies, mistakes and blunders can occur in every phase of a chess game.
Inaccuracies appear more prominently in the opening, mistakes in the mid-
dle game, while blunders appear more often in the end game. Additionally,
blunders become more severe in later stages of chess games. The soundtrack
could reflect that behaviour.

– The number of possible captures rapidly rises within the first moves and
reaches as well as maintains this high value throughout the opening. After the
opening, the number of possible captures decreases as attacks are converted to
captures and as a result the number of remaining pieces declines continuously.
The number of captures could be useful for the determination of the degree of
development, as more possible captures correlates with the optimal position
for a piece.

– The number of legal moves has a similar progression as the number of cap-
tures. The number of legal moves can be associated to the status of a king
being in check. When a king is checked, the number of legal moves signifi-
cantly decreases. Therefore, the number of legal moves does not only serve as
basis for the mobility metric, but implicitly reflects on a king being checked.

• Most of the implemented metrics do not take up significant computation time
and are usable for a real-time scenario, whereas the score evaluation depends
on the predefined time limit. There is a delicate balance required for choosing

7. Conclusion 75

a time limit which does not take up too much time to compute—for being able
to reflect the chess game in a short time frame—and choosing a time limit large
enough to provide a reliable score evaluation. A time limit between 500 ms and
2 s seems reasonable to fulfill both requirements. Generally speaking, the larger
the evaluation’s time limit, the better the evaluation’s reliability. In classic chess
games players tend to play more slowly as they are given more time to make
their moves, as opposed to a blitz game using a time control of five minutes. This
impacts the size for the time limit, as in a blitz game multiple moves can occur
in rapid succession and therefore smaller time limits are preferred. There are not
many score evaluation dependant metrics and most importantly every threat on
the board can be calculated immediately and independent from Stockfish.

The takeaways present valuable guidelines for further developments and give insights
to the issues associated with developing a soundtrack for chess. The chess metric evalu-
ation can be expanded, but already provides valuable observations for the development
of metrics over the course of a multitude of games, as well as the value range a metric
can assume.

7.2 Future Prospects
The implementation for the data-driven soundtrack for chess clearly has shortcomings
as evaluations suggest. The soundtrack’s issues can be ironed out and solutions to those
problems have been suggested. More refined input metrics for the soundtrack can provide
necessary context for inexperienced players and improved dynamics in the soundtrack’s
implementation allow easier recognition of the situation. When considering the evalu-
ation results, the data-driven soundtrack for chess is a proof of concept which utilizes
the right ideas but requires refinement. Those refinements concern both the metrics and
the sound implementation themselves. An in-depth analysis of additional chess metrics
is required to determine the most useful metrics for the soundtrack. The chess metric
ranking from Section 6.2 provides a list ordered by their suitability for the soundtrack
and subsequently should be processed in the suggested order. Imminent mate threats,
piece development, king safety or pawn structure could be analyzed in a next step and
implemented in the soundtrack. Furthermore, the soundtrack could be enhanced to en-
able the activation and deactivation of certain metrics to provide the opportunity for
detecting the proper mix of metrics.

As only a limited number of parameters are dependent on the time-consuming score
evaluation many of the important parameters can be computed immediately after a move
was played. Therefore further developments focused on a real-time implementation are
feasible and allow a realization of a chessboard providing immediate feedback through
the medium of sound. This could include a physical chessboard on which real chess
can be played on. The chessboard could be capable of recognizing and analyzing moves
in real-time, with the constraint being the time limit for a chess engine’s evaluation.
Defining a time limit between 500 ms and 2 s would provide a reliable score evaluation,
depending on the computer’s processing power. The analyzed parameters could then
be sent to an audio synthesizer or sound engine, similar to a predefined FMOD event.
Creating and controlling the soundtrack with the use of audio programming languages—

7. Conclusion 76

such as Csound, SuperCollider or ChucK—are also possible. The audio component could
react to the given metrics and send its sounds to speakers. As the soundscape in the
second sound design proved to be a promising implementation, this approach can be
refined for a better depiction of chess for inexperienced players, as well as optimized for
better dynamics. The chessboard could be placed within a room that houses multiple
loudspeakers which are evenly distributed within a room, similar to Cage’s Reunion.
This enhanced concept would be a worthy approach to a sonification of chess games
and it would be able to provide meaningful audio feedback for beginners.

7.3 Conclusion
Chess is a complex game in which a lot of strategy is involved. Inexperienced players
often do not understand the full scope of the game and easily overlook game deciding
threats. Therefore a data-driven soundtrack was developed to interpret chess games
and play sounds reflecting the game. Few projects are dedicated to add a soundtrack
to chess, most notably John Cage. Cage’s Reunion aimed to add a soundtrack to the
movements on the chessboard without minding their implied significance in the game.
Contrary to Cage’s approach, this soundtrack aims to provide meaningful feedback for
players in various ways through the medium of sound. The soundtrack suggests the
player with the an advantage in the game, signals threats on the board, addresses mis-
takes by the players, hints when a king is in check and more. The implementation is
aimed to enable an in-depth analysis of chess metrics and determine their suitability to
provide new insights into chess for inexperienced players. Unlike Reunion, the project
does not process chess games in real-time. Nevertheless, the evaluation proves the pos-
sible implementation of a soundtrack played in real-time and controlled by a physical
chessboard. It provides the necessary guidelines to implement a soundtrack suitable for
inexperienced players.

Additionally, it can be highlighted that the usage of a soundscape was well received
by the evaluators and they showed great interest in the development of the soundtrack.
The evaluators identified significant potential for the soundtrack and reassured the va-
lidity behind the concept. Of course the soundtrack’s implementation is not perfect, it
utilizes suitable metrics, yet it does not provide a complete picture of the game. The
soundtrack itself appears flat in its sounds. A challenge in the project was to create
a enjoyable soundtrack. The first sound designed relied on the usage of instrumental
music tracks, which annoyed listeners within in a short time frame. The utilization of
a calm and subtle soundscape that plays certain notes throughout the whole game, as
well as changes the notes depending on the evaluation, marked a great milestone. The
soundscape enabled the listeners to concentrate on the chess game itself and not be
completely distracted by the soundtrack.

Eventually, the soundtrack provides some insights into a game of chess for inexpe-
rienced players and assists players in assessing the current situation properly. Most of
the metrics utilized in the second soundtrack design proved to be valuable and useful
for the soundtrack. Further development especially in the sound design can introduce
more dynamics to the soundtrack. A development of a physical chessboard analyzing
the game while playing a soundtrack which reflects on the analyzed metrics in real-time
seems feasible and the thesis provides valuable findings for such an implementation.

Appendix A

Technical Details

A.1 Project Directory
The thesis project consists of three main sections, as presented in Figure A.1. Folder
ChessAnalysisTool contains the tools to analyze chess games, including the three pro-
grams Analysis CSV, Bulk Analysis and Repeated Bulk Analysis—described in Sec-
tion 5.1. The Analysis CSV program is implemented in the file analysis_csv.py,
which in turn is stored in the folder csv_program. The database-related Python pro-
grams Bulk Analysis and Repeated Bulk Analysis are implemented as bulk_analysis.py
and repeated_bulk_analysis.py, respectively. Both programs are located in folder
db_program. engine contains the Stockfish chess engine which is used for evaluating
chess games. The graphs folder includes multiple programs used to generate the plots
for the chess metric evaluation described in Section 6.3. The lib folder contains the base
functionality written in Python for the different analysis programs. The models folder
contains the object models for the database. The output folder contains all analyzed
games including a move by move analysis stored as CSV file, a line graph generated for
the game scores and images of a chess board for every move in a game as SVG files.
Generated databases and graphs are also stored in output. pgn contains all chess game
files that serve as input for the Python programs.

ChessFMODStudio contains the FMOD Studio project itself and all related data. All
audio tracks which serve as base for FMOD are located in Assets. Metadata stores
the meta data for the project e.g., the link to the assets within the project, parameter
presets or the folder to the bank’s location. In Build reside the banks generated by
FMOD, ready to be used by a C++ program.

ChessMusicTool contains the C++ application for controlling the soundtrack by the
provided chess metric data. The application contains four folders. The ChessMusicGUI
folder is comprised of the main program, the common folder containing utility methods
for accessing the FMOD Studio API and the games folder for input files. lowlevel and
studio contain the necessary .dll files to run the program. media holds FMOD banks
for soundtrack consumption.

77

A. Technical Details 78

/
ChessAnalysisTool

csv_program
db_program
engine
graphs
lib
models
output

db
graph
kasparov_karpov_1986

images
pgn

ChessFMODStudio
Assets
Build
Metadata

ChessMusicTool
ChessMusicGUI

common
games

kasparov_karpov_1986
lowlevel
media
studio

Figure A.1: Directory of the project.

Appendix B

CD-ROM/DVD Contents

Format: CD-ROM, Single Layer, ISO9660-Format

B.1 PDF-Files
Path: /

Höller_Stefan_2019.pdf Master thesis

Path: /evaluation
chess_metrics.pdf . . . A list of metrics ranked by the evaluators as described in

Section 6.2
handout_de.pdf The handout given to the evaluators in German
handout_en.pdf The handout given to the evaluators in English
heuristic_problems.pdf A list of problems found by the evaluators during the

heuristic evaluation as described in Section 6.1
results_a.pdf The completed handout by evaluator A
results_b.pdf The completed handout by evaluator B
results_c.pdf The completed handout by evaluator C

Path: /online_sources
*.pdf Online references saved as Portable Document Format

files
*.jpg, *.png Online references saved as raster graphics

B.2 Project
Path: /project/bin

ChessMusicTool.zip . . Executable program for the data-driven soundtrack

Path: /project/other

79

B. CD-ROM/DVD Contents 80

*.mp3 Audio recordings of the second soundtrack design for
different chess games.

Path: /project/src
ChessAnalysisTool.zip . Project files for the Chess Analysis Tool. Archive

structured as described in Appendix A.1
ChessFMODStudio.zip . Project files for second sound design’s FMOD project.

Archive structured as described in Appendix A.1
ChessMusicTool.zip . . Project files for the Chess Music Tool. Archive

structured as described in Appendix A.1

B.3 Miscellaneous
Path: /images

*.pdf, *.pdf_tex Original Portable Document Format files
*.svg Original Scalable Vector Graphics files
*.jpg, *.png Original raster graphics

References

Literature

[1] George M Adel’son-Vel’skii et al. “Programming a computer to play chess”. Rus-
sian Mathematical Surveys 25.2 (1970), pp. 221–262 (cit. on p. 12).

[2] Richard Bellman. “On the application of dynamic programing to the determi-
nation of optimal play in chess and checkers”. In: Proceedings of the National
Academy of Sciences of the United States of America. Vol. 53. 2. National Academy
of Sciences, 1965, pp. 244–247 (cit. on p. 15).

[3] Nicolas Boulanger-Lewandowski, Yoshua Bengio, and Pascal Vincent. “Modeling
temporal dependencies in high-dimensional sequences: Application to polyphonic
music generation and transcription”. In: Proceedings of the 29th International
Conference on International Conference on Machine Learning. Edinburgh, Scot-
land, UK: Omnipress, June 2012, pp. 1881–1888 (cit. on p. 23).

[4] Graham Burgess. The Mammoth Book of CHESS. 2nd ed. London: Constable &
Robinson Ltd, 2009 (cit. on pp. 3–7, 17).

[5] José R. Capablanca. Chess Fundamentals. Algebraic edition. New York: Harcourt,
Brace and Company, 1934 (cit. on p. 7).

[6] Joel Chadabe. “Interactive Composing: An Overview”. Computer Music Journal
8.1 (1984), pp. 22–27 (cit. on p. 23).

[7] William Clark, Jan Golinski, and Simon Schaffer. “Enlightened Automata”. In:
The Sciences in Enlightened Europe. University of Chicago Press, 1999. Chap. 5,
pp. 126–165 (cit. on p. 8).

[8] Nick Collins et al. “Live coding in laptop performance”. Organised Sound 8.3
(2003), pp. 321–330 (cit. on pp. 23, 24).

[9] Lowell Cross. “Reunion: John Cage, Marcel Duchamp, Electronic Music and
Chess”. Leonardo Music Journal 9 (1999), pp. 35–42 (cit. on pp. 24–26).

[10] Roger B. Dannenberg. “The Implementation of Nyquist, a Sound Synthesis Lan-
guage”. Computer Music Journal 21.3 (1997), pp. 71–82 (cit. on p. 20).

[11] Peter W. Frey. Chess Skill in a Man and Machine. 2nd ed. Springer, 1983 (cit. on
pp. 12–14, 30).

81

References 82

[12] Andreas Friedl. “Integration of Mobile Devices into a Floor-Based Game to In-
crease Player Dynamics”. Masterarbeit. Hagenberg, Austria: University of Applied
Sciences Upper Austria School of Informatics, Communications and Media, Sept.
2015 (cit. on p. 58).

[13] Richard D. Greenblatt, Donald E. Eastlake, and Stephen D. Crocker. “The Green-
blatt Chess Program”. In: AFIPS ’67 (Fall) Proceedings of the November 14-16,
1967, fall joint computer conference (Anaheim). Washington D.C.: Thompson
Books, Nov. 1967, pp. 801–810 (cit. on p. 13).

[14] Feng-hsiung Hsu. Behind Deep Blue. Building the Computer that defeated the
World Chess Champion. Princeton University Press, 2002 (cit. on p. 11).

[15] Katherine Isbister and Noah Schaffer. Game usability. Advice from the Experts
for Advancing the Player Experience. Elsevier, 2008 (cit. on p. 58).

[16] G.M. Levitt. The Turk, Chess Automaton. McFarland, Incorporated, Publishers,
2000 (cit. on p. 9).

[17] Max V. Mathews. The Technology of Computer Music. MIT Press, 1969 (cit. on
p. 19).

[18] James McCartney. “Rethinking the Computer Music Language: SuperCollider”.
Computer Music Journal 26.4 (2002), pp. 61–68 (cit. on p. 20).

[19] Jakob Nielsen. “Enhancing the explanatory power of usability heuristics”. In: Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing Systems.
ACM, 1994, pp. 152–158 (cit. on p. 58).

[20] Jakob Nielsen. “Reliability of Severity Estimates for Usability Problems Found by
Heuristic Evaluation”. In: Posters and Short Talks of the 1992 SIGCHI Conference
on Human Factors in Computing Systems. CHI ’92. Monterey, California: ACM,
1992, pp. 129–130 (cit. on pp. 57, 58).

[21] Jakob Nielsen. Usability Engineering. Mountain View: Morgan Kaufmann, 1994
(cit. on pp. 56, 57).

[22] Gerhard Nierhaus. Algorithmic Composition. Paradigms of Automated Music
Generation. Vienna: Springer, 2009 (cit. on p. 22).

[23] John Nunn. Learn Chess. A Gold-Medal Winner Explains How to Play and Win
at Chess. London: Gambit Publications, 2010 (cit. on pp. 7, 8).

[24] Dale E. Parson. “Chess-Based Composition and Improvisation for Non-
Musicians”. In: Proceedings of the International Conference on New Interfaces
for Musical Expression. Pittsburgh, PA, United States: nime.org, 2009, pp. 157–
158 (cit. on pp. 26, 27).

[25] Edgar Allan Poe. “Poe’s Works”. In: ed. by John H. Ingram. Vol. 3. A & C Black,
1899. Chap. Maelzel’s Chess-Player, pp. 286–311 (cit. on p. 9).

[26] Miller Puckette. “Combining Event and Signal Processing in the MAX Graphical
Programming Environment”. Computer Music Journal 15.3 (1991), pp. 68–77 (cit.
on p. 20).

[27] Joseph F von Racknitz. Ueber den Schachspieler des Herrn von Kempelen. Müler,
1784 (cit. on p. 9).

References 83

[28] Claude E. Shannon. “Programming a Computer for Playing Chess”. Philosophical
Magazine Series 7 41.314 (Mar. 1950), pp. 256–275 (cit. on pp. 10, 11, 13, 16, 29,
30, 50).

[29] Jeremy Silman. How to Reassess Your Chess. Chess mastery through chess imbal-
ances. 4th ed. Los Angeles: Siles Press, 2010 (cit. on p. 7).

[30] David Silver et al. “A general reinforcement learning algorithm that masters chess,
shogi, and Go through self-play”. Science 362.6419 (2018), pp. 1140–1144 (cit. on
p. 11).

[31] Tom Standage. Digitale Bildverarbeitung. The Life and Times of the Famous
Eighteenth-Century Chess-Playing Machine. 1st ed. New York: Walker Publishing
Company, Inc, 2002 (cit. on p. 8).

[32] “Torres and his remarkable automatic devices”. Scientific American 80.2079 (Nov.
1915), pp. 296–298 (cit. on p. 9).

[33] Anders Tveit et al. “Reunion2012: A Novel Interface for Sound Producing Actions
Through the Game of Chess”. In: Proceedings of the International Conference on
New Interfaces for Musical Expression. Goldsmiths, University of London, 2014,
pp. 561–564 (cit. on pp. 25, 26).

[34] Ge Wang. “The Chuck Audio Programming Language ‘A Strongly-timed and On-
the-fly Environ/Mentality’”. PhD thesis. Princeton, NJ, USA, 2008 (cit. on p. 20).

[35] Ge Wang and Perry R. Cook. “ChucK: A Concurrent, On-the-fly, Audio Pro-
gramming Language”. In: Proceedings of the 2003 International Computer Music
Conference. International Computer Music Association, 2003 (cit. on p. 20).

[36] Robert Willis. An Attempt to Analyse the Automaton Chess Player of Mr. De
Kempelen. Booth, 1821 (cit. on p. 9).

[37] Matthew Wright, Adrian Freed, et al. “Open SoundControl: A New Protocol for
Communicating with Sound Synthesizers”. In: Proceedings of the 1997 Interna-
tional Computer Music Conference. International Computer Music Association,
1997 (cit. on p. 20).

Audio-visual media

[38] Shigeko Kubota. Marcel Duchamp and John Cage. Duchamp (white) moves a
modified chessboard, while Cage and Duchamp’s wife watch. The chessboard is
fitted with 64 photoresistors to register piece movements for control sounds. 1968.
url: https://hyperallergic.com/424124/marcel-duchamp-john-cage-reunion-chess-t
oronto/ (visited on 11/09/2019) (cit. on p. 26).

[39] Jakob Nielsen. How to Conduct a Heuristic Evaluation. Curve showing the pro-
portion of usability problems in an interface found by heuristic evaluation using
various numbers of evaluators. The curve represents the average of six case stud-
ies of heuristic evaluation. Nov. 1994. url: https://media.nngroup.com/media/edi
tor/2012/10/30/heur_eval_finding_curve.gif (cit. on p. 57).

https://hyperallergic.com/424124/marcel-duchamp-john-cage-reunion-chess-toronto/
https://hyperallergic.com/424124/marcel-duchamp-john-cage-reunion-chess-toronto/
https://media.nngroup.com/media/editor/2012/10/30/heur_eval_finding_curve.gif
https://media.nngroup.com/media/editor/2012/10/30/heur_eval_finding_curve.gif

References 84

[40] Karl Gottlieb von Windisch. The Turkish Chess Player. Copper engraving from
the book: Karl Gottlieb von Windisch, Briefe über den Schachspieler des Hrn.
von Kempelen, nebst drei Kupferstichen die diese berühmte Maschine vorstellen.
1783. url: https://commons.wikimedia.org/w/index.php?title=File:Tuerkischer
_schachspieler_windisch4.jpg&oldid=325912949 (visited on 10/22/2019) (cit. on
p. 9).

Online sources

[41] About - Stockfish. url: https://stockfishchess.org/about/ (visited on 11/04/2019)
(cit. on p. 15).

[42] Dominick Blanchette. Difference Between Attacked Piece and Threatened Piece.
url: https://web.archive.org/web/20190528213030/http://chesslessons4beginners
.com/rules/lesson-3-attack-threat.htm (visited on 05/28/2019) (cit. on p. 3).

[43] CCRL 40/4 Rating List - All engines, best versions only. url: http://www.comp
uterchess.org.uk/ccrl/404/ (visited on 11/04/2019) (cit. on p. 15).

[44] Data-Driven Programming. url: https://en.wikipedia.org/w/index.php?title=Data
-driven_programming&oldid=898745506 (visited on 11/07/2019) (cit. on p. 23).

[45] FIDE. FIDE Laws of Chess. 2018. url: http://arbiters.europechess.org/wp-cont
ent/uploads/2019/05/Arbiters-Manual-Laws.pdf (visited on 10/16/2019) (cit. on
pp. 16, 29).

[46] Firelight Technologies FMOD Studio API. Mar. 2019. url: https://www.fmod.co
m/resources/documentation-api (visited on 03/14/2019) (cit. on p. 21).

[47] FMOD Studio User Manual 1.10. Mar. 2019. url: https://www.fmod.com/re
sources/documentation- studio?page=welcome- to- fmod- studio .html (visited on
03/14/2019) (cit. on p. 21).

[48] Brain Foo. Two Trains. Sonification of Income Inequality on the NYC Subway.
url: https://datadrivendj.com/tracks/subway/ (visited on 11/07/2019) (cit. on
p. 24).

[49] Adrian Freed and Matt Wright. Open Sound Control. url: http://opensoundcont
rol.org/introduction-osc (visited on 01/11/2019) (cit. on p. 20).

[50] How does the Game Report Analysis work? url: https://support.chess.com/artic
le/364-how-does-the-game-report-analysis-work (visited on 10/18/2019) (cit. on
p. 32).

[51] Ilyps. Help me understand the lichess computer. June 2015. url: https://www.r
eddit.com/r/chess/comments/38yw7o/help_me_understand_the_lichess_comp
uter/cryyomi?utm_source=share&utm_medium=web2x (visited on 10/18/2019)
(cit. on pp. 32, 44).

https://commons.wikimedia.org/w/index.php?title=File:Tuerkischer_schachspieler_windisch4.jpg&oldid=325912949
https://commons.wikimedia.org/w/index.php?title=File:Tuerkischer_schachspieler_windisch4.jpg&oldid=325912949
https://stockfishchess.org/about/
https://web.archive.org/web/20190528213030/http://chesslessons4beginners.com/rules/lesson-3-attack-threat.htm
https://web.archive.org/web/20190528213030/http://chesslessons4beginners.com/rules/lesson-3-attack-threat.htm
http://www.computerchess.org.uk/ccrl/404/
http://www.computerchess.org.uk/ccrl/404/
https://en.wikipedia.org/w/index.php?title=Data-driven_programming&oldid=898745506
https://en.wikipedia.org/w/index.php?title=Data-driven_programming&oldid=898745506
http://arbiters.europechess.org/wp-content/uploads/2019/05/Arbiters-Manual-Laws.pdf
http://arbiters.europechess.org/wp-content/uploads/2019/05/Arbiters-Manual-Laws.pdf
https://www.fmod.com/resources/documentation-api
https://www.fmod.com/resources/documentation-api
https://www.fmod.com/resources/documentation-studio?page=welcome-to-fmod-studio.html
https://www.fmod.com/resources/documentation-studio?page=welcome-to-fmod-studio.html
https://datadrivendj.com/tracks/subway/
http://opensoundcontrol.org/introduction-osc
http://opensoundcontrol.org/introduction-osc
https://support.chess.com/article/364-how-does-the-game-report-analysis-work
https://support.chess.com/article/364-how-does-the-game-report-analysis-work
https://www.reddit.com/r/chess/comments/38yw7o/help_me_understand_the_lichess_computer/cryyomi?utm_source=share&utm_medium=web2x
https://www.reddit.com/r/chess/comments/38yw7o/help_me_understand_the_lichess_computer/cryyomi?utm_source=share&utm_medium=web2x
https://www.reddit.com/r/chess/comments/38yw7o/help_me_understand_the_lichess_computer/cryyomi?utm_source=share&utm_medium=web2x

References 85

[52] In the computer analysis, what’s the difference between inaccuracy, mistake, and
blunder? url: https://web.archive.org/web/20150922072729/https://support.che
ss.com/customer/portal/articles/1444907-in-the-computer-analysis-what-s-the-dif
ference-between-inaccuracy-mistake-and-blunder- (visited on 10/18/2019) (cit. on
p. 32).

[53] Interested readers of the Internet newsgroup rec.games.chess. Portable Game No-
tation Specification and Implementation Guide. Mar. 1994. url: https://web.arch
ive.org/web/20190411152024/https://www.thechessdrum.net/PGN_Reference.txt
(visited on 04/11/2019) (cit. on pp. 16, 17).

[54] Stefan-Meyer Kahlen. Description of the universal chess interface (UCI). Apr.
2004. url: https://web.archive.org/web/20190924182927/http://wbec-ridderkerk
.nl/html/UCIProtocol.html (visited on 09/24/2019) (cit. on p. 15).

[55] Paul Lansky and Brad Garton. RTcmix. url: http : / / rtcmix . org/ (visited on
08/21/2019) (cit. on pp. 20, 22).

[56] Lomonosov Endgame Tablebases. 2012. url: https://chessok.com/?page_id=2796
6 (visited on 10/28/2019) (cit. on p. 15).

[57] Iain McCurdy and Joachim Heintz. Csound. 2015. url: http://openweb.flossman
uals.net/files/csound.pdf (visited on 11/20/2019) (cit. on pp. 19, 20).

[58] Jakob Nielsen. How to Conduct a Heuristic Evaluation. 1995. url: https ://w
ww . nngroup . com / articles / how - to - conduct - a - heuristic - evaluation/ (visited on
11/20/2019) (cit. on p. 56).

[59] Jakob Nielsen. Severity Ratings for Usability Problems. Nov. 1994. url: https://w
ww.nngroup.com/articles/how-to-rate-the-severity-of-usability-problems/ (visited
on 11/14/2019) (cit. on p. 58).

[60] python-chess documentation. Nov. 2019. url: https://python-chess.readthedocs.io
/en/latest/index.html (visited on 11/12/2019) (cit. on p. 40).

[61] Tord Romstad. The Art of Evaluation (long). Aug. 2007. url: http://www.tal
kchess.com/forum3/viewtopic.php?p=135133#p135133 (visited on 10/11/2019)
(cit. on p. 29).

[62] Barry Vercoe. The Canonical Csound Reference Manual. Version 6.06. 2015. url:
http://www.csounds.com/manual/html/ (visited on 11/20/2019) (cit. on p. 19).

https://web.archive.org/web/20150922072729/https://support.chess.com/customer/portal/articles/1444907-in-the-computer-analysis-what-s-the-difference-between-inaccuracy-mistake-and-blunder-
https://web.archive.org/web/20150922072729/https://support.chess.com/customer/portal/articles/1444907-in-the-computer-analysis-what-s-the-difference-between-inaccuracy-mistake-and-blunder-
https://web.archive.org/web/20150922072729/https://support.chess.com/customer/portal/articles/1444907-in-the-computer-analysis-what-s-the-difference-between-inaccuracy-mistake-and-blunder-
https://web.archive.org/web/20190411152024/https://www.thechessdrum.net/PGN_Reference.txt
https://web.archive.org/web/20190411152024/https://www.thechessdrum.net/PGN_Reference.txt
https://web.archive.org/web/20190924182927/http://wbec-ridderkerk.nl/html/UCIProtocol.html
https://web.archive.org/web/20190924182927/http://wbec-ridderkerk.nl/html/UCIProtocol.html
http://rtcmix.org/
https://chessok.com/?page_id=27966
https://chessok.com/?page_id=27966
http://openweb.flossmanuals.net/files/csound.pdf
http://openweb.flossmanuals.net/files/csound.pdf
https://www.nngroup.com/articles/how-to-conduct-a-heuristic-evaluation/
https://www.nngroup.com/articles/how-to-conduct-a-heuristic-evaluation/
https://www.nngroup.com/articles/how-to-rate-the-severity-of-usability-problems/
https://www.nngroup.com/articles/how-to-rate-the-severity-of-usability-problems/
https://python-chess.readthedocs.io/en/latest/index.html
https://python-chess.readthedocs.io/en/latest/index.html
http://www.talkchess.com/forum3/viewtopic.php?p=135133#p135133
http://www.talkchess.com/forum3/viewtopic.php?p=135133#p135133
http://www.csounds.com/manual/html/

	Declaration
	Abstract
	Kurzfassung
	Introduction
	Motivation
	Problem Statement
	Document Structure

	Chess
	Principles and Metrics
	Move
	Attacks
	Castling
	Blunder
	Material
	Mobility
	Initiative
	Pawn Structure
	Passed Pawn
	Development
	Imbalances
	Phases of Chess

	Chess Engines Overview
	First Mechanical Chess Players
	Shannon's Chess Engine Definition
	Chess Engines Pursuit to Gain Strength

	Chess Engine Principles
	Board Representation
	Static Evaluation Function
	Look-Ahead Procedure
	Opening Book
	End Game

	Stockfish
	Universal Chess Interface
	Chess Notations
	Centipawn
	Score
	Elo Rating
	Summary

	Adaptive Soundtracks
	Audio Programming Languages
	FMOD
	Choosing the Appropriate Audio Program
	Controlling Adaptive Soundtracks
	Audio Synthesis for Chess
	Reunion
	Reunion2012
	Music for 32 Chess Pieces

	Summary

	Data-Driven Soundtracks for Chess
	Requirements
	Limitations
	First Soundtrack Design
	Samples
	Audio Tracks
	Leading Player
	Intensity
	Possible Moves
	Is Check
	Move Category
	Attackers Count

	Second Soundtrack Design
	Samples
	Base Layers
	Fluctuation
	Unopposed Threats
	Mistake
	Is Capture
	Possible Moves
	Attack/Defense Relation

	Summary

	Implementation
	Architecture
	Database

	Details on the Chess Analysis Tool
	Open a Chess Game
	Connect to Stockfish
	Main Program for Chess Analysis
	Computing Score and Best Move
	Categorize Difference between Best and Actual Move
	Analyzing Captures
	Detect Attacks
	Detect Guards
	Detect Unopposed Threats
	Determine the Number of Possible Moves
	Determine the Number of Threats
	Parameter Definitions

	Details on the FMOD Studio Event
	Details on the Chess Music Tool
	Loading a Game into Chess Music Tool
	Load FMOD Bank
	Initialize FMOD Parameters
	Fluctuating Score

	Summary

	Evaluation
	Heuristic Evaluation
	Method
	Adjusted Approach
	Result
	General Feedback

	Chess Metric Ranking
	Chess Metric Evaluation
	Score and Score Change
	Threats
	Mistakes
	Captures
	Legal Moves

	Real-Time Evaluation
	Summary

	Conclusion
	Evaluation Results
	Future Prospects
	Conclusion

	Technical Details
	Project Directory

	CD-ROM/DVD Contents
	PDF-Files
	Project
	Miscellaneous

	References
	Literature
	Audio-visual media
	Online sources

