
A Mixed-Initiative Approach for
Assisting Blind and Visually Impaired
Users with the BlindBits Level Editor

Areen Said

M A S T E R A R B E I T

eingereicht am
Fachhochschul-Masterstudiengang

Interactive Media

in Hagenberg

im Juli 2016

© Copyright 2016 Areen Said

This work is published under the conditions of the Creative Commons
License Attribution–NonCommercial–NoDerivatives (CC BY-NC-ND)—see
http://creativecommons.org/licenses/by-nc-nd/3.0/.

ii

http://creativecommons.org/licenses/by-nc-nd/3.0/

Declaration

I hereby declare and confirm that this thesis is entirely the result of my
own original work. Where other sources of information have been used, they
have been indicated as such and properly acknowledged. I further declare
that this or similar work has not been submitted for credit elsewhere.

Hagenberg, July 14, 2016

Areen Said

iii

Contents

Declaration iii

Acknowledgments vii

Kurzfassung viii

Abstract ix

1 Introduction 1
1.1 Motivation . 1
1.2 Objective . 1
1.3 Structure . 2

2 Orientation and Mobility Training 3
2.1 Definition . 3
2.2 Playful Learning . 3
2.3 Tools . 4

2.3.1 Audio Game Maker 4
2.3.2 Blastbay Game Toolkit 4

2.4 Examples . 5
2.4.1 AbES . 5
2.4.2 Audio Haptic Maze . 5
2.4.3 MOVA3D . 6
2.4.4 Legend of Iris . 7

3 The BlindBits Project 10
3.1 Design Method . 10
3.2 The Game . 10
3.3 Game Mechanics . 11
3.4 Level Editor . 12

3.4.1 Text-Based Editor . 12
3.4.2 3D-Model Editor . 12

4 Procedural Content Generation 14

iv

Contents v

4.1 Definition . 14
4.2 Types of PCG . 14

4.2.1 Online and Offline Algorithms 14
4.2.2 Randomness in PCG 15
4.2.3 Stochastic and Deterministic approaches 15

4.3 Mixed-Initiative PCG . 16
4.3.1 Mixed-Initiative Interaction 16
4.3.2 Computer-Assisted or Computer-Aided Design 16

4.4 Genetic Algorithms . 17
4.5 Brute-Force Search Algorithm 17
4.6 Generative Grammars . 18

4.6.1 Shape Grammars . 20
4.6.2 Graph Grammars . 20

4.7 Examples in Games . 21
4.7.1 Minecraft . 21
4.7.2 .kkrieger . 22
4.7.3 No Man’s Sky . 22

4.8 Examples in Tools . 23
4.8.1 SpeedTree . 23
4.8.2 Tanagra . 24
4.8.3 Sentient Sketchbook 24

5 Implementation 26
5.1 Framework . 26
5.2 Editor . 27

5.2.1 Game Data . 27
5.2.2 User Interface . 27
5.2.3 User Interface Element Adjustments 27

5.3 Mobile . 29
5.3.1 User Interface . 29
5.3.2 Java Native Interface 30

5.4 Assistant . 31
5.4.1 Used Algorithm . 31
5.4.2 Rules . 31

5.5 Methods . 32
5.5.1 Graph Replacement 32
5.5.2 Used Method . 33

5.6 Converting the Graph to a Game 34
5.6.1 Filling the Gaps . 37
5.6.2 Describing the Game 38

6 Evaluation 40
6.1 Participants . 40
6.2 Task . 40

Contents vi

6.3 Data Results . 41
6.3.1 Comprehensibility of the Screen Reader 41
6.3.2 Explanation of the Game Structure 41
6.3.3 Mental Representation of the Game 42
6.3.4 Navigation . 42
6.3.5 Overview of the Game 42
6.3.6 Usefulness of the Assistant 42
6.3.7 Speed of the Assistant 43
6.3.8 User Experience . 44

7 Conclusion 47
7.1 Summary . 47
7.2 Result . 47
7.3 Outlook . 48

A CD-ROM Content 49
A.1 Thesis . 49
A.2 Study Results . 49
A.3 Project . 49
A.4 Online Literature . 49

References 51
Literature . 51
Films and audio-visual media . 54
Online sources . 54

Acknowledgments

I would like to thank a few people that helped me throughout this work.
First, I want to thank my supervisor Christoph Schaufler for his support and
advice. Thanks to DI Georg Regal and Mag. Elke Mattheiss from the Aus-
trian Institute of Technology for their support and help whenever I needed
it. A big thanks to Mag. Erich Schmid from the Bundes-Blindenerziehungs-
institut and all the students that volunteered and made this work possible.
Last but not least I would like to thank my family, who also helped greatly
in their own ways.

vii

Kurzfassung

Blinde und sehbehinderte Schüler erhalten Orientierung und Mobilitätstrai-
ning um allgemeine Navigationsfähigkeiten und bestimmte Routen zu erler-
nen um mehr Unabhängigkeit zu erlangen. Um dieses Training zu fördern
versucht ein Projekt namens BlindBits die Wegfindung der Schüler in einer
Schule für Blinde in Wien, das “Bundes-Blindenerziehungsinstitut”, zu ver-
bessern. Um dies zu erreichen, wird eine Art Schnitzeljagd Spiel für das
Handy entwickelt mit dem Zusatz von einem Editor, der die Schüler ihre
eigenen Geschichten und Aufgaben für die App erstellen lässt. Da dies ein
mühsames Unterfangen sein kann, wird ein Assistent eingeführt, die die Ar-
beitszeit für die Erstellung eines Spiels stark reduziert. Durch die Verwen-
dung von Graphgrammatiken wird die Spielstruktur aufgebaut, die darüber
entscheidet wie und wo die Wege hinführen und wo sie enden. Ergebnisse
von einem Testlauf haben gezeigt, dass die Erzeugung mit dem Assistenten
im Vergleich zur manuellen schrittweisen Erstellung die Arbeit erheblich
erleichtert und beschleunigt.

viii

Abstract

Blind and visually-impaired students receive orientation and mobility train-
ing to learn general navigation skills and specific routes and become more
independent in their daily lives. To foster this training a project called Blind-
Bits aims to improve the wayfinding of students in a school for the blind
in Vienna, called the “Bundes-Blindenerziehungsinstitut”. To achieve this, a
scavenger hunt-like game app for the smartphone is developed with the ad-
dition of an editor, that lets the students create their own stories and tasks
for the app. Since this can be a tiresome endeavor, an assistant is introduced
that completes a lot of the work in order to reduce the time necessary to
create a game. By using graph grammars, a game structure is built that
decides how and where the paths should lead to and where they should end.
The results show that the assistant developed in this study does indeed ease
the building of games compared to manually setting up the whole work.

ix

Chapter 1

Introduction

1.1 Motivation
Blind and visually impaired people cannot rely on visual cues as sighted
people, thus finding their way in an unfamiliar building can be a significant
challenge. Therefore, schools for the blind try to assist pupils in learning
general navigation skills and specific important routes by providing orien-
tation and mobility (O&M) training classes. Learning the concept of how
to get from one place to another is crucial for independent wayfinding, but
learning a certain route is a tedious process of repeatedly walking the very
same route and sequentially memorizing landmarks and orientation points.
To counter that, games are introduced as playful approaches for orientation
and mobility training to foster motivation and therefore learning, since they
tend to be fun.

This is why a project called BlindBits was started, which tries to support
O&M training in its own playful way. After the game idea was set, two
requirements were defined: to create a level editor, where the users can
create their own designed levels; and a game app on a smartphone, where
the created levels can be played on. During the development some problems
arose when trying to find a way to make it accessible and easy to use for
the target group. Some levels ended up not being playable because of ill-
designed games, e.g., some necessary items were required to continue, which
were not obtainable. Another issue was the amount of work that had to be
put into it to create a level. Though it was interesting and exciting in the
beginning, this turned out to be tiresome for some.

1.2 Objective
The objective of this thesis is to create a digital assistant, that supports
the user by removing the tedious work of creating games from scratch. Ad-
ditionally, finished games should be verified as being solvable before they

1

1. Introduction 2

get published. In order to achieve this, most of the work should be done
automatically by the assistant, like setting up the structure and providing
most of the game specific-information, while leaving the creative part, which
is to come up with a story, to the user. Since the user is still managing the
whole game, errors can occur. To prevent such games being published, the
assistant will inspect them for mistakes and point the user to the fields that
need to be resolved first.

1.3 Structure
Chapter 2 gives some insight about the purpose of O&M training and play-
ful learning, with several example games that have already gathered some
knowledge in this field. After that, Chapter 3 explains the BlindBits project
in detail, how it was executed and what design methods were used. In Chap-
ter 4, different procedural content generation methods and their usage are
discussed. The implementation of the BlindBits project and the assistant
is described in Chapter 5. Chapter 6 shows and evaluates the test results.
Finally, Chapter 7 concludes with a summary and an outlook of this work.

Chapter 2

Orientation and Mobility
Training

2.1 Definition
The purpose of O&M training is to help blind or visually impaired people
to maintain their independence when walking. Orientation is the ability to
identify the location and have knowledge of one’s position in it. Mobility is
the capability of moving in an orderly, efficient and safe manner through the
environment [23]. Those two skills are needed by anyone to travel from one
place to another. However, the blind and visually impaired need to compen-
sate for their reduced or nonexistent visual information by learning to use
their other senses, such as hearing and touch, to enhance their navigation
competence.

2.2 Playful Learning
O&M training is crucial for independent wayfinding, but the continuous
learning of specific routes and behavior rules can become tedious. Hence,
playful approaches like computer games are used in some research studies to
foster motivation and learning. Research in this field has shown that the use
of computer games to support blind people in O&M training does indeed
produce motivation and commitment for learning [20]. Those games support
the construction of a mental map of an existing building or space, which later
helps the blind to navigate in the real physical world. Ways to achieve this
could be the use of the player’s own body movement only (MOVA3D) [17],
or in combination with a Wiimote Controller in order to interact with a
virtual environment, as seen in the game MovaWii [16]. Both games use
the clock orientation system [18], where turning the own body’s axis around
influences the direction the player looks at. Another approach is an Audio-

3

2. Orientation and Mobility Training 4

based Environment Simulator (AbES), a tool that allows users to navigate
through a virtual building by using a keyboard, in which it plays auditory
cues while the user walks through [15]. The blind can thereby gather enough
spatial information of a building to convey it to the real world. Based on
AbES, a new game named Audio Haptic Maze was created that expands the
idea by adding a haptic device [19]. Each distinct object receives a haptic
texture to represent the shape, and thus a player can feel and identify them
in the virtual environment.

2.3 Tools

2.3.1 Audio Game Maker

Only a few approaches are dedicated to user-generated games. The Bar-
timéus Accessibility Foundation1 supported the development of software
called Audio Game Maker, which enabled blind people to create their own
computer games without any programming knowledge. Users could create
events and place sounds by choosing one from a library that was provided
or add one from his or her own soundpools. The interface was completely
acoustic and had no graphical UI so sighted users had no advantages or
could not aid the blind. The goal was to increase the number of computer
games for the visually impaired; however, it seems that it is no longer offered
on the official website.

2.3.2 Blastbay Game Toolkit

The Blastbay Game Toolkit is also like the Audio Game Maker software,
which allows the creation of audio-only games without prior knowledge in
programming, even though it would be beneficial. With its own scripting
language, which is based on the C++ programming language, and its own
engine, it aims to simplify the development severely. In addition, it comes
with numerous auxiliary modules and comprehensive documentation. Also
included are orchestrated music loops, which are available for use in their
own games. Through this tool a few audio games for the blind were released,
making it more successful than the developer had expected but not finan-
cially viable. Thus, in 2014 he changed the software from being commercial
software to freeware, dropping official support and only updating it when
he has time.

1http://www.audiogamemaker.com

2. Orientation and Mobility Training 5

2.4 Examples
To get a better insight into some of the games noted in Section 2.2, they are
described here in more detail.

2.4.1 AbES

The goal of the game is to prove that when users interact within a virtual
environment, they can create a mental map of the building, which helps
them to navigate later in the actual physical environment [6]. At first, the
users learn the keystrokes used to navigate in the virtual world (see Fig. 2.1).
Then they hear sounds that represent objects and their relative location. To
make the virtual environment interesting, game elements are implemented.
The player has to find and collect all the jewels that are hidden in different
rooms and avoid colliding with a monster that can take the jewels away and
hide them in the building again. Each step approximates one step in the real
world and turns are 90° which makes the movement discrete. Opposed to
continuous movement, this helps the user to understand exactly and far he
or she has traveled. For the test, three blind participants were asked to play
the game. The building that was used was unknown to the testers and they
were also not aware of the overall purpose of the project. The presenters
had tasks for the users that they had to solve within a certain time limit.
The next step was to let the participants perform the same tasks in the real
world, where they found themselves for the first time. It turned out that
they were even faster at solving the tasks in the physical world than in the
digital world, which proves the concept of the writers. The main advantage
over standard O&M training is that the spatial land of unknown places can
be learned in a safe and controlled manner. Since the target group were
totally blind students, the visual representation of the game shows a top-
down view of the map, although the audio feedback is in 3D. This means
that, when the enemy is approaching from the left side of the player, he or
she will also hear it as if the monster is coming from the left. The purpose
of the visuals is to make it easier to control the movements of the players.

2.4.2 Audio Haptic Maze

The Audio Haptic Maze is based on the AbES software, with the addition of
a haptic device. With the haptic device “Novint Falcon”2 a user can control a
3D cursor inside the virtual environment, which can be seen in Fig. 2.2. Any
object in the game can receive a texture, which is used to represent distinct
objects. If the user “touches” a wall with the 3D cursor, the haptic feedback
of that object’s texture will be different compared to that associated with
touching a door. This works with different vibration strength feedback and

2http://www.novint.com/index.php/novintfalcon

2. Orientation and Mobility Training 6

(a) (b) (c)

Figure 2.1: In column (a) the floor plan of the actual building can be seen.
Under column (b) the digital version of the map was created that serves as
the virtual game world. In column (c) items and the enemy can be seen with
the addition of objects getting labeled.

the controllability of the cursor. For instance, sliding the cursor over an icy
surface will make the cursor of the Novint Falcon start skidding whereas
touching over a rough surface will be harder. With this, a player will be
able to identify shapes within the rooms and therefore create a more precise
mental map. For feedback for actions like walking or turning, vibration in
the direction of the user’s movement is applied. The authors came to the
conclusion that the haptic interface is as effective as the audio interface for
O&M purposes.

2.4.3 MOVA3D

In the video game MOVA3D, the player has to navigate through a virtual
environment in order to find a certain number of pocket watches on the
map. Once the user finds and grabs one, he or she has to keep it for thirty
seconds while running away from enemies who try to steal it. The navigation
movement is discrete, where each step is 40 cm and each turn represents 30°
in the real world. The game has 3D graphics which are used to motivate and
provide extra cues for low-vision users; however, the software was developed
in a way that it is possible to navigate without using the visual cues (in Fig.
2.3(a) the visual representation can be seen). The most significant elements
of the environment were put into the video game to make it possible to
create an accurate mental representation of the building. Stereo sound that

2. Orientation and Mobility Training 7

Figure 2.2: The “Novint Falcon” emulates haptic feedback. A user can
control a 3D cursor inside the virtual environment.

emulates 3D sound was used to allow players to detect each of the elements
in the video game. The navigation works with a normal keyboard or a “Dig-
ital Clock Carpet” (DCC). The DCC consists of a round wooden structure
divided into 12 cells (see Fig. 2.3(b)). The Sections correspond to keys that
the user can press with their feet. It also has tactile cues that allow the user
to recognize where they are standing on the carpet. The DCC uses a clock
orientation system for navigation, meaning that if the user needs to turn by
90° he or she would have to turn to 3 o’clock and press it. Thus, using this
device does not allow the player to see the display device at all times while
playing.

A test with 24 children was conducted with the age range from 7 to 14
years, with seven of them blind and the rest partially sighted. The results
have shown that users could transfer what they have learned in the game to
real world tasks.

2.4.4 Legend of Iris

The Legend of Iris plays in a virtual world, which has its focus on conveying
O&M skills instead of teaching an existing building. The game took its in-
spiration from the popular Action Adventure Puzzle game “The Legend of

2. Orientation and Mobility Training 8

(a) (b)

Figure 2.3: The visuals of the game “MOVA3D” can be seen in (a) and the
hardware used for the DCC is displayed in (b).

Zelda”.3 It promises to deliver more fun and a high replay-value compared
to the other O&M teaching games mentioned above, by providing a story
and lots of puzzles [2]. Some tasks in the game are, for instance, following
moving objects, while having background noises or avoiding moving objects
to teach focused hearing. In order to create a more realistic acoustic envi-
ronment head-related transfer functions (HRTFs) are used. HRTF describes
how sound is received by the ear, whether directly or indirectly as a reflec-
tion, and takes the linear distortion in the signal through the ear, the head
and the torso into account. HRTF describes the common filtering effect the
head, torso and the outer ear have on the frequency distribution of an inci-
dent acoustic signal. To give a more natural feel of hearing the environment,
the virtual reality headset “Oculus Rift”4 can be used to locate objects au-
rally by moving the head. The game uses continuous movement to be faster
in navigating. Naturally, this results in users being lost in the world and not
knowing where they actually stand in a room, making it impossible to create
a mental map; although that is not the intention of this game, but rather
to teach users certain skills which can be used in real life, such as focusing
more on their hearing. A screenshot from the game can be seen in Fig. 2.4.

3http://www.zelda.com/
4https://www.oculus.com/en-us/rift/

2. Orientation and Mobility Training 9

Figure 2.4: The visuals of the game “Legend of Iris”. In this screenshot the
user walks on a bridge and avoids evil spirits.

Chapter 3

The BlindBits Project

The BlindBits project is coordinated by the Austrian Institute of Technology
(AIT) and is carried out in cooperation with the Bundes-Blindenerziehungs-
institut (BBI) and the University of Applied Sciences Upper Austria. The
latter is responsible for the implementation and technical issues whereas the
BBI, a school for the visually impaired and blind, provides feedback from the
position of the target group, which is crucial for the execution of the project.
The purpose is to complement the O&M training of the BBI and support the
learning of the school building routes by using a digital educational game.

3.1 Design Method
Regarding the design phase in developing a game for blind people, a model
is presented where the end user takes on an important role [21]. This end-
user-based design might lead to a higher acceptance rate of the participants
and reduce the probability of redesigning the software. That is why this
project implements a user-centered design process, which means that stu-
dents work with the research team in workshops and provide feedback on
the development of the game and the level editor in all the project stages.
This way the implementation will be shaped together with the students by
having multiple test cycles to ensure a product that fits the needs of the
blind and visually impaired.

3.2 The Game
The game type itself is like a scavenger hunt, which uses the BBI building as
a playground. To be able to play it, an Android-powered smartphone with
the BlindBits app installed is needed.1 Essentially, the goal is to navigate
from one place (in this game it is the door of a room) to another and by

1Future releases to other platforms are possible.

10

3. The BlindBits Project 11

Figure 3.1: A student using the game to scan a NFC-tag.

doing so, fulfill all the tasks that challenge the player on his or her way. At
the beginning, the player has to run the app and choose a game they want to
play. Those games are a collection of predefined, as well as user-generated
levels. The app will then ask the player to position himself at a specified
start point. From there on, the player will be faced with multiple tasks,
which include navigating to different locations within the school building.
Depending on the level, different paths in the storyline can be taken, where
the player has to solve puzzles and gather items in order to achieve the goal
of the game.

3.3 Game Mechanics
The main element of the game mechanic and thus also of the editor is an
event. An event is set at one concrete location (e.g., the cafeteria) that
initiates a speech by a non-player character (NPC) (e.g., the waiter) or
a dialog with that character (e.g., by answering a question asked by the
character). Moreover, interactions and the collection of items happen at an
event. The following events can occur during the game:
Dialog: This is the standard event that initiates a dialog with a NPC. It

can be used for progressing the story or providing information about
certain elements in the game.

Quiz: The player will be confronted with a question and has to choose the
right answer from several possibilities.

Choice: The app works similar to the Quiz-Event, with the difference being
that the chosen answer determines the progress of the story.

When starting an event, a sequence of actions (hints, dialog options, fetching
an item, etc.) is triggered. Events can only be started if the preconditions
are fulfilled. This could be the possession of a certain item (e.g., gold) or

3. The BlindBits Project 12

having finished a predecessor event (e.g., event “talk to the janitor” finished)
or both. All events have a postcondition to mark that an event is finished.
As a postcondition the player can receive a concrete item (e.g., gold) or a
token (e.g., event finished). The possession of an item or token is then used
as a precondition for successor events.

3.4 Level Editor
As mentioned above, the students can create their own scavenger hunt
games, which can then be played and shared with other students. The same
tool is used by the team behind this project to create some example games
to produce a small collection that can already be played by the students
and give some inspiration for how a game can look. Hence they can write
the whole story, choose which and when events should occur and what items
are needed. As the users are blind, which could result in disregarding cer-
tain steps while creating a level, an assistant is included in this tool, which
this thesis will revolve around. This should ensure playable levels by finding
design errors and providing help in correcting them when needed. It should
also aid users by giving advice on what to do next.

3.4.1 Text-Based Editor

When the planning for the level editor started, the platform was chosen
quickly: a desktop PC with Windows 7 or higher. The argument is that
most students are trained to use a PC with adjusted contrast and/or screen
readers. Therefore using a keyboard for writing stories and creating events
seems more practical with a desktop. Windows is the main OS used in
the BBI, so the tool can easily be installed on their devices. The editor is
text-based and can be operated with the keyboard only using the default
Windows Text-To-Speech (TTS) API for reading out the UI elements and
its contents. There is also a graphical UI implemented for the pupils with
low vision, which can be used with a mouse. In the menu, they can change
the contrast, scale the size of the UI and enable or disable the TTS reader.
During the first tests and after some feedback, new ideas came forth about
how the editor can be expanded. More information on the development of
the editor can be read in Section 5.2.

3.4.2 3D-Model Editor

One of the additions is the virtual model of the school building, which the
students can walk through with the keyboard to test their created games
without the need to do so in reality. Furthermore, editing features are im-
plemented to allow direct modification of a game, so users can fix errors
or change events while testing the game in the 3D world. This feature is

3. The BlindBits Project 13

supported by audio cues to enable non-visual handling of the editor as well.
One step in the game roughly equals one step in the physical world. Acous-
tic feedback is provided when coming close to a wall and certain objects
or rooms trigger distinctive sounds that allow them to be identified. The
used sounds need to be chosen carefully and in consultation with the target
group, as those can get annoying or even be confusing for the users. For ex-
ample, a constant knocking with increasing speed when approaching a wall
was assessed very negatively by the pupils. As a help function, information
about the current position can be enquired by pressing a key. Distance in
meters and compass directions turned out to be useless, as pupils usually
do not have an appropriate conceptualization of this information. Providing
information about the current floor and which rooms are ahead of the player
seemed to be more suitable.

Alternatives

Another idea that was brought up and also realized later is to have the editor
on phones. Most visually impaired pupils use their smartphones regularly
and are familiar with making text input. With a mobile version, pupils could
create games independently from their location. Input would be handled by
swiping and tapping. For TTS output the native TTS engine would be used.

Chapter 4

Procedural Content
Generation

4.1 Definition

Procedural content generation (PCG) is the creation of game content with
limited or indirect user input using algorithms [28, 30]. The term “content”
can refer to many things such as levels, maps, items, quests, weapons, etc.
This definition, however, is not universal and excludes common applications
of search and optimization techniques like artificial intelligence (AI). The
most common uses of PCG in games have the purpose of providing more
content and worlds than could be reasonably expected for a human designer
to manage, given the time constraints during design, the limitation of artists
and hardware constraints for storing large, detailed worlds [4, 10]. These
tools mostly require just a human to press a “generate” button to fulfill the
task like in Civilization [34], or they generate content automatically when
needed while exploring the world, as seen in Minecraft [31, 27]. Thus, the
aim of PCG is to reduce the scutwork for designers, while giving them more
opportunities for creativity.

The range of fields that can gain from PCG is vast, e.g., in movies, sound,
textures and so on. This thesis, however, focuses on PCG in the gaming
field. In the following Sections some approaches for content generation are
discussed.

4.2 Types of PCG

4.2.1 Online and Offline Algorithms

One of the first things that has to be considered when using PCG algorithms
is whether the generation is carried out offline during game development or
online, and if the algorithm has to work during the runtime of a game. An

14

4. Procedural Content Generation 15

(a) (b)

Figure 4.1: This figure shows the landscape in The Elder Scrolls: Oblivion
[32] (a) and a randomly generated world map in Civilization IV [34] (b).

example of offline PCG is when a fictional world like landscapes (such as
hills, trees, plants), locations of treasure chests and even dungeons are cre-
ated automatically, for example in the game Oblivion from the Elder Scrolls
series [32], which are later modified by a human designer before the game is
shipped. The online approach works differently, where for instance the game
world is created afresh, whenever a new game is played. Therefore, each
world can look different depending on the parameters set by the developers.
The turn-based strategy game series Civilization [34] allows that method,
where unique maps can be generated. Screenshots of the mentioned games
can be seen in Fig. 4.1.

4.2.2 Randomness in PCG

All content-generated algorithms expand content of an already existing rep-
resentation of it. Adding randomness to it is not necessary but can add
unexpected structures and increase replay value, e.g., Minecraft. Some al-
gorithms might only need a seed number as input, while others might use
a multi-dimensional vector of parameters, which defines the properties of
the generated content. For example, when using the same parameter values,
the algorithm should create the same content each time. Changing just one
value should return completely different results.

4.2.3 Stochastic and Deterministic approaches

Another design question is whether the content generation should be sto-
chastic or deterministic. Stochastic algorithms generate new content every
time they are used, while the deterministic approach produces the same
result. Considering the seed parameter as mentioned above in Sec. 4.2.2
would mean that all algorithms are actually deterministic; therefore, they
are disregarded on purpose to differentiate between those two approaches.

4. Procedural Content Generation 16

(a) (b)

Figure 4.2: (a) Human creates content, the computer tests if it breaks any
design constraints and presents alternatives. (b) Computer generates content,
the human makes changes to the solution to get the style they want.

4.3 Mixed-Initiative PCG
Mixed-initiative PCG is somewhat similar to regular PCG, with the dis-
tinction that the mixed-initiative PCG tools automate only a part of the
process, requiring human input to complete the operation [11], and thus us-
ing an offline approach. There are two ways how this could be implemented
(see Fig. 4.2): first, the human designer has a goal, where he needs the com-
puter to aid him in realizing it; and second, the computer generates content
autonomously, with the human to evaluating the results and improving when
necessary.

There are two areas in this field that will be looked into more deeply:
mixed-initiative interaction and computer-assisted design.

4.3.1 Mixed-Initiative Interaction

Allen et al. [3] mention in their article that mixed-initiative interaction de-
scribes an interaction between computer and human in which initiative is
shared. This style of interaction can be seen as a conversation. An agent
and a human can take turns in controlling the conversation, while the other
works to assist it. They can also work independently from each other, and
aid the other when needed. The interaction should adapt the style depend-
ing to the current problem. They mostly are about computers being able to
help the human with the design process.

4.3.2 Computer-Assisted or Computer-Aided Design

Computer-aided tools have been described as “the designer’s slave”, but this
can also be the case for advisors, when certain requirements are not met [12,
29]. Computers already perform very efficiently as so called “slaves”, so the
next step is to improve their role as an advisor or “colleague” [13]. In Lubart’s

4. Procedural Content Generation 17

article [33], he mentions that the most ambitious vision of human-computer
interaction for creativity involves a real partnership. This idea comes from
the field of artificial intelligence, where computers behave like humans and
cannot be distinguished from them. An example of creative thinking would
be to rely on random or semi-random search mechanisms to generate new
ideas, in case one is stuck in his or her thought process. Computer-assisted
design can be useful in game editors, helping non-programmers in creating
levels. In some cases modding games with the level editors leads to new
game titles like Counter-Strike.

4.4 Genetic Algorithms
An evolutionary search algorithm is stochastic, which is inspired by biologi-
cal evolution, such as reproduction, mutation, recombination and selection.
The idea behind this is to get individual solutions, that get evaluated. De-
pending on the fitness function each candidate gets a rating. The fittest
individuals get the chance to reproduce, which hopefully results in better
solution candidates due to mutation, whereas the least fit ones are removed
from the population of candidate solutions. The hardest and most important
step is to find the right fitness function. This is problem-dependent, since
it rates how well an individual solution can solve a problem. Depending on
the nature of the problem, the population size may contain many solutions.

They usually act on the following pattern [9]. At the beginning, multiple
solutions are generated randomly to create a search space with all possible
solutions. Solutions might be seeded in areas where they are likely to be
found. Then, certain steps will be repeated until a termination condition is
reached. First, solutions will receive a fitness value, evaluated by a fitness
function. Depending on the method used, all solutions may get rated by the
fitness function or only a random sample of the population, although as it
relies on the size, the process can be time consuming. The best solutions
are selected for reproduction. The next step is to create new solutions by
the combination of genetic operators called recombination or crossover and
mutation by using a pair of solutions as “parents”. The crossover is respon-
sible for inheriting the characteristics of its “parents” and mutation allows
the development of new ones to get “offsprings”, which are not just deter-
mined by their inheritance. Finally, after these processes new results exist
that are different from the first population and the process repeats, if the
termination condition is not fulfilled. The flowchart can be seen in Fig. 4.3.

4.5 Brute-Force Search Algorithm
Also called exhaustive search, is a method that simply iterates through all
the possible configurations. It checks all the possible arrangements, which

4. Procedural Content Generation 18

Start

Initial population

Evaluation

Selection

Crossover/
recombination

Mutation

Termination

End

Yes

No

Figure 4.3: Diagram of a genetic algorithm.

means that it will find a solution if it exists. Therefore, depending on the size
of the problem, a brute-force search might quickly go out of proportion. So,
either powerful enough hardware is needed or heuristics1 are implemented
to limit the problem size.

4.6 Generative Grammars
Generative grammar is a theory that comes from linguistics by the linguist
Noam Chomsky, where grammar is considered as a well-defined set of rules to
describe a language, consequently being capable to generate infinite num-
bers of grammatically correct sentences [5]. A generative grammar typi-
cally consists of symbols, which are letters from the alphabet that represent
certain things, depending on the usage, and a set of rules. A rule defines

1A function that estimates the exact solution to rank paths in search algorithms.

4. Procedural Content Generation 19

what symbol can be replaced by what other symbol which has the form
𝑠𝑦𝑚𝑏𝑜𝑙(𝑠) → 𝑛𝑒𝑤𝑆𝑦𝑚𝑏𝑜𝑙(𝑠). Therefore, grammars replace what is on the
left-hand side (LHS) of the arrow with what is on the right-hand side (RHS)
of it. Symbols that cannot be replaced are called terminals and are usually
represented with lowercase characters, while non-terminals use uppercase
characters. A given string at the beginning will be checked repeatedly to try
and apply rules when possible, until either all the symbols are replaced with
terminals, or until a certain amount of derivations is reached, or a desired
result is reached. Which design pattern is implemented depends on the use
case.

There are two popular methods replacing symbols, namely sequential
rewriting and parallel rewriting [26]. In sequential rewriting, the string gets
checked from left to right and starts rewriting a symbol when a rule can be
applied without looking at the following symbol. In parallel rewriting, as the
name suggests, all possible symbol changes are rewritten simultaneously.

Graph grammars need something to work with so it can expand, and
thus that ‘S’ is often used as the start symbol [7]. For instance, a set of rules
might look like this:

𝑆 → 𝐴𝐵

𝐴 → 𝐵𝑏

𝐵 → 𝐴

Applying those rules with the start symbol ‘S’, the derivations will look like
this:

S
AB
BbA
AbBb
BbbAb
AbbBbb
...

As can be seen, there will always be two non-terminal symbols present in
the string, and thus the rewriting will never stop if not restricted with an
iteration limit. Choosing the right rules to achieve the desired results is
challenging and time-consuming, and needs a lot of testing.

Grammars can be either context-free or context-sensitive. They are con-
text-free, if the LHS of every rule consists of just one single nonterminal
symbol. Hence the name context-free, since the rules will be applied if a
symbol in a string matches the LHS of a rule, no matter in what context the
symbol occurs. This is as opposed to context-sensitive grammars, where the
occurrence of a symbol is significant. Here is an example of a context-free
grammar

4. Procedural Content Generation 20

𝐴 → 𝐵𝐶,

where the occurrence of ‘A’ alone is needed to be replaced by ‘BC’, and the
context-sensitive grammar

𝑎𝐴𝑏 → 𝐵𝐶,

where ‘A’ must exist between two terminal symbols ‘a’ and ‘b’ to be replaced
by ‘BC’. Generative grammars are not restricted to strings and can also be
used on different types such as shapes (see Sec. 4.6.1), tile maps and graphs
(see Sec. 4.6.2).

4.6.1 Shape Grammars

Shape grammars are useful for generating 2D and 3D spaces [7]. Originally
they were introduced for generating paintings (2D) and sculptures (3D) by
George Stiny and James Gips in the 1970s [25], but then they found their
way into computer science. Like string grammars, shape grammar shapes are
replaced with new shapes. A shape rule consists of two labeled shapes, with
one shape on each side of the arrow [24]. Labeled shapes in turn consist of two
parts: a shape and a set of labeled points. The labeling helps to differentiate
aspects of the shapes. Non-terminal shapes have so-called markers and are
therefore on the LHS of a rule. They are similar to labels, but are actual
symbols attached to a shape. Those labels and markers restrict the rules
on where they can be applied and help to locate and orientate new shapes.
In order to get terminal shapes, the markers and labels must be removed.
The alphabet used can consist of words that describe certain shapes, like a
wall or a door. These are used as symbols, compared to the letters in string
grammars.

A way to employ shape grammar is to first find a symbol in the target
space and then look for a rule that implements this symbol. After that a
possible position to use the rule is located, based on the relative fitness, as
one location might be better to use than another.

4.6.2 Graph Grammars

Graph grammars, which consist of nodes and edges, are useful to repre-
sent missions, since they are easier to convey structures like nonlinear and
explorative adventure games, where the missions contain dead-ends, locks
and keys, and multiple paths that lead to the level goal [7, 26]. In graph
grammars, one or several nodes and interconnecting edges can be replaced
by a new structure of nodes and edges. Many different types of graphs ex-
ist, e.g.,: directed, undirected, simple and multi graphs (as shown in Fig.
4.4). Depending on those graphs, the rules have to be defined accordingly.
If a context-free graph grammar is used, the LHS of a rule is a single node,
otherwise it is a graph.

4. Procedural Content Generation 21

(a) (b)

3

4

1

(c) (d)

Figure 4.4: Different types of graphs are shown here: (a) an undirected
and simple graph, where multiple edges and loops are not allowed and edges
form a set, with each edge being an unordered pair of distinct vertices; (b)
a directed graph, where the edges have a direction associated with them; (c)
a weighted graph, where a number is assigned to the edges representing a
value depending on the usage, e.g., lengths or costs; and (d) a multigraph,
where two or more edges can connect the same two vertices (blue edge) and
where loops can be permitted, which are edges that connect a vertex to itself
(red edge).

4.7 Examples in Games

4.7.1 Minecraft

The second most popular game in history2 Minecraft, from the developer Mo-
jang, relies heavily on PCG [31, 40]. As mentioned in Section 4.2.1, Minecraft
uses an online approach, where every new game started creates a new world
around the starting point of the player. The further the player goes in a
direction, more parts of the world are generated. The founder of the game,
Markus Persson, wrote a blog post [38] about the terrain generation, saying
that he uses 3D Perlin noise with linear interpolation to generate flat areas
and smooth hills. However, that article was published in 2011 and much has
changed in how terrains work since then; therefore, this technique might be

2As of 21st September, 2016

4. Procedural Content Generation 22

Figure 4.5: Automatically generated landscapes in “Minecraft”.

Figure 4.6: The 96 KB game “.kkrieger”, where everything is generated
with procedural methods.

obsolete now. Some examples of terrains generated in Minecraft are seen in
Fig. 4.5.

4.7.2 .kkrieger

The game .kkrieger, which came out in 2004 is a first-person shooter that
impresses with its small size of 96 KB. This is possible because of the ex-
tensive use of PCG methods. Every texture, mesh and sound in the game is
generated with procedural methods. A screenshot of the game can be seen
in Fig. 4.6.

4.7.3 No Man’s Sky

No Man’s Sky is an action-adventure survival video game which was released
worldwide in August 2016 [35]. It involves exploring a massive universe and
its planets, with their mostly unique flora and fauna. Everything can be

4. Procedural Content Generation 23

Figure 4.7: One of the populated planets in “No Man’s Sky”, although most
of them will be entirely barren.

named, from plants to animals, planets and even stars, but only once; there-
fore, being the first player discovering places has its benefits. However, the
numbers of planets is so huge, that finding a planet that has been visited
before is very unlikely.

The main feature of No Man’s Sky is that the whole universe, including
the stars, planets, lifeforms, ecosystems, and the behavior of the space-bound
factions is created through procedural generation using deterministic algo-
rithms and random number generators (as explained in Sections 4.2.3 and
4.2.2). Hello Games uses a 64-bit seed number to create all these features,
which enables a virtual universe which contains over 18 quintillion planets
[36]. In Fig. 4.7, an inhabited planet can be seen, with generated landscapes
and animals.

4.8 Examples in Tools

4.8.1 SpeedTree

SpeedTree3 is used for generating vegetation by entering a few parameters
like the branch length, angle, tree height, etc. So, an artist spends most of
the time defining the rules in order to receive the desired trees, grass and
plants. After that is done, SpeedTree can generate an infinite number of trees
which meet these parameters. It has been used in many major Hollywood

3http://www.speedtree.com/

4. Procedural Content Generation 24

Figure 4.8: An example screenshot of the Game “The Witcher 3” using
SpeedTree for the vegetation.

movies and AAA-games4 like, for example, “The Witcher 3” seen in Fig.
4.8.

4.8.2 Tanagra

With Tanagra, a human can work together with a computer to create a level
for a 2D platformer game [11, 22]. It has a mixed-initiative approach, where
a human designer and the generator work together through iterative cycles,
combining their strengths. The generator produces a lot of levels quickly and
ensures playability without the need for human testing, while the human
focuses on his or her creativity and judges the levels’ quality. A combination
of reactive planning and constraint programming allows Tanagra to respond
to designer changes in real time.

4.8.3 Sentient Sketchbook

The Sentient Sketchbook is a tool that helps the designer to create low-
resolution strategy game maps [37, 12]. With a graphical interface, a user
can edit the maps to his liking, while the tool tests for their playability. To
fulfill the wish that a computer should act like a colleague, it also suggests
alternative maps to the user’s current designs to enable new unthought map
ideas. It uses genetic algorithms, implementing a feasible–infeasible novelty
search, which allows the real-time generation and presentation of alternatives

4A term used for high budget games by large studios.

4. Procedural Content Generation 25

(a)

(b)

Figure 4.9: The Sentient Sketchbook interface can be seen in (a) with some
sketches created by a human on the left side and map suggestions from the
generator based on the user’s sketches on the right side. A high resolution
map from the sketch in (a) can be seen in (b).

maps, using the users’ input for presenting more suitable solutions. The
interface can be seen in Fig. 4.9.

Chapter 5

Implementation

The first Section of this chapter covers the used frameworks and function-
alities that were needed to realize the project. In the second Section, the
implementation of the used algorithm will be described.

5.1 Framework
The Assistant, BlindBits Editor and most part of the smartphone app are
written in the programming language C# using the Unity Game Engine.1

There are several reasons for this choice, which are already existent knowl-
edge about the engine, the extensive functionality and support on various
platforms and the ease of use. Both 2D and 3D features are needed for this
project to handle the UI and 3D school building. One other feature of the
engine had a considerable influence on its selection, and that is the portabil-
ity to multiple OS platforms. With just minor code changes the PC editor
can be ported to Android or iOS. Since Unity supports C# and JavaScript
(Boo support dropped with Unity 5, but the compiler can still compile it)
and the API is the same regardless of the language, the choice for C# is
purely personal preference. The IDE is Microsoft Visual Studio Community
2015,2 which provides native support for Unity. Some of mobile OS’s distinct
features, like NFC scan and TTS, which were needed in this project, are not
supported in the Unity API. Therefore, Java is used to create a wrapper
class with all the Android specific methods that are needed for this project.
After that, Unity can access the code using the Java Native Interface (JNI),
with more details explained in Section 5.3.2.

1http://unity3d.com
2https://visualstudio.com

26

5. Implementation 27

5.2 Editor
To start working on the assistant, the editor had to be finalized. Otherwise
it would make no sense, since the design and features of the editor changed
continuously throughout the project, getting feedback from the students
after each iteration step. As stated above, Unity was chosen since it has
many advantages that can be used for the project. However, it also has its
limitations, with one of them being the lack of API for an operating system’s
TTS engine, which is an essential component in this project. Therefore,
a DLL3 is used to access the speech engine from the Unity project. This
resulted in imitating most of the default TTS features regarding what is
said and how.

5.2.1 Game Data

The game data is saved in a XML file thus making it easily readable by any
text editor or browser. The name consists of the PC account user name and
the game name. Therefore, they are also accessible for blind users to read
and even edit with their TTS software without the need to use the Game
Editor. In the editor there is a publish button to upload the games onto a
server and make them playable on the phone.

5.2.2 User Interface

The order of the UI elements is arranged like most other video games, mean-
ing they are listed from the top to bottom of the screen. There was no need
to create a special design, since the blind rely on the navigation handling
itself, which is built like other applications they use on the PC, and visually-
impaired users have the familiar interface.

5.2.3 User Interface Element Adjustments

Since the target group consists of visually impaired and blind people, the
UI had to be adapted to aid them accurately according to the navigation
handling. Every action gives the user some kind of audio feedback, which
will be explained in detail later. However, independently from all the special
cases of audible reactions, if the focus of an element changes to another,
the name of the new focused element will always be read out, stopping any
previous ongoing feedback. There are four types of UI elements that had
to be adjusted to be of use: radio buttons, list boxes, drop-down lists and
text blocks. Navigating from one UI element to the next works by pressing
the Tab key and when navigating in reverse, the Shift key has to be pressed

3A dynamic link library, which is a library that contains code and data that can be
used by more than one program at the same time.

5. Implementation 28

additionally. The navigation uses the carousel movement, however without
the visual effect, which means when reaching the last element of a menu
and trying to jump to the next the first element on top of the screen is
selected. The same is the case in the other direction, resulting in selecting
the last element when the first element was selected before. When active,
the purpose of the UI element and its type is read out. Then, depending
on the element, the handling works differently, as described in the following
subsections:

Radio buttons

Once a radio button field is selected, the TTS engine will read out the current
selected button plus the element type and its status; for instance, “simple
event mode – radio button – active”. Navigating through the radio buttons
in the same field works by using the up and down arrow keys, which also
automatically selects the focused one and deselects the other, since only one
radio button from a group can be selected at a time.

List box

If a list box is selected, the elements inside can be opened by pressing the
down arrow key. Once inside the list, navigation works with the up and
down arrow keys. Pressing the Home key selects the first element, while
the End key selects the last one. When trying to go beyond those ends, a
signal sound plays. Another method to speed up the navigation is to press
the initial letter of the word that is being searched for, which will jump to
the first word with that initial letter. With the Enter key the toggles can
be selected and deselected, which will trigger the speech to read out the
current item in the list and the item type, with the addition of telling the
user if it has been selected or deselected; for instance, “book – control field
– deselected”. To close the list box it is enough to just press the Tab key
to jump to the next element, or by pressing the Alt key and up arrow key
simultaneously, which will close the box but the focus will remain on the list
box element.

Drop-down list

Drop-down lists are similar to list boxes, with the difference of just being
able to pick one element from the list. Therefore, selecting an element will
close the drop-down list, with the full information given to the user: the
purpose of the element, its type and the selected item, e.g., “location: drop-
down list – gym hall". There is an additional type of drop-down lists which
have the ability to add an entry to the list. If this is possible, the first entry
will be the trigger called “Add Person”, for example, which switches the list
to an input field. When the new entry is written there are again two ways to

5. Implementation 29

proceed, with both of them marking the new entry as selected: pressing the
Enter key to still have the focus on the drop-down list element or pressing
the Tab key to jump to the next element.

Text

The adjustments in text fields are about the handling of the speech output.
The following list is the behavior expected from TTS software:
Key echo: Every pressed key of the alphanumerical block is spoken.
Word: When a word is finished being typed in by pressing the Space key,

the whole word is read out. It should also be spoken when using the
Ctrl key with the left or right arrow key, which lets the cursor jump
over words.

Deleting: When a character is being deleted with the Backspace key, the
removed character has to be read out. However, when a character is
deleted with the Delete key, the new character next to the cursor is
read out.

Cursor position: When moving to the left or right, the character under
the cursor is spoken.

Text: When moving up or down in the text field, the whole text is spoken,
including the punctuation.

Normally, the speech will read out sentences just using the words, using spe-
cial characters only for the pronunciation, as intended like a human does.
To enable the speech to recognize punctuation and read it out, the string
is converted into an XML string. Since the speech has some key word com-
mands that it should look out for, the XML tags <spell> and </spell>
are added before and after the special character. This will force the TTS
software to read them too.

5.3 Mobile
As discussed above, the game is an app running on an Android smartphone
(see Sec. 3.2). Another requirement for the phones is to have a NFC chip,
since the app relies heavily on that technology. Like the editor, the game
is made in Unity with the benefits explained in the Framework section (see
Sec. 5.1).

5.3.1 User Interface

Again, the UI is like in the editor from top to bottom. Of course again,
every input must give a feedback by sound, and due to the fact that it is a
smartphone vibration feedback was also added.

5. Implementation 30

Menu Control

The navigation works through swipe. So going through a list of elements,
for example when selecting a game, works by swiping up or down with one
finger with the TTS informing of the current selected element. Tapping once
repeats the information to give the user the feedback of where he or she is
currently positioned. Double-tap confirms the selected element and executes
it, e.g., loading a game.

Game Control

When the game starts, the user immediately gets confronted with the first
information about the game (where the player should position himself). If
he missed the information and wants to hear it again, a simple swipe-up is
needed to make the Speech Assistant repeat the text. This works throughout
the game. For the case of Quiz and Choice events, when the user’s input is
needed, there is more to consider. In this case, the user hears a dialog or
a question, where he or she has a few options to choose from. Swiping up
repeats the dialog or question as expected. But the handling of the answer
options is similar to the menu control, which is tapping once for repeating
the option and tapping twice for confirming. However, to differentiate the
game selection and the menu, to go through the options the user has to
swipe left or right. In case the user wants to stop the game and go back to
the main menu, swiping up with two fingers shows the option to go back.

5.3.2 Java Native Interface

There are OS features needed for the app that cannot be accessed with
the Unity Engine API. Thankfully there is the Java Native Interface (JNI),
which is a framework that enables the ability to write native Java methods
and access them in a project with a different programming language. With
the JNI, Java objects can be created and updated, methods can be called,
class information can be obtained and more. Unity provides helper classes
such as AndroidJNIHelper and AndroidJNI to access this functionality in an
easier way. The Unity documentation [39] states the following information
about those helper classes:

AndroidJNI is a wrapper for the JNI calls available in C. All
methods in this class are static and have a 1:1 mapping to the
Java Native Interface. AndroidJNIHelper provides helper func-
tionality used by the next level, but is exposed as public methods
because they may be useful for some special cases.

With that functionality, a plugin was written in Java to access the standard
Android TTS engine, the NFC-Scanner and phone vibration methods.

5. Implementation 31

5.4 Assistant
The first objective of the assistant was to implement a control feature that
inspects if all the postconditions in each event are set and if they are all
used in other events as a precondition. Besides, it checks if there are empty
fields in an event, like no person is set or no dialog is given. This is crucial
to ensure a fully working game; otherwise, it could easily lead to dead-ends,
which could be seen in previous tests without that functionality. This control
comes to action when a user is trying to publish the game to the server, in
order to enable others to play it. When the verification fails, the assistant
jumps to the incomplete or incorrect event, telling the user what is necessary
to fix it. No special algorithm was required for implementing this feature,
since it is a simple check-up process.

The more complex part is the automatic generation of levels. To come
up with a suitable algorithm, the requirements for the level generation had
to be defined, which are the following:
Controllability: The users should be able to set parameters on how the

game levels should somehow appear in the end. Therefore, a flexible
approach is needed that aids the user in creating the game structures
they want.

Non-linearity: The editor allows users to create games with multiple ways
to solve a game or even reach dead-ends by design. This has the benefit
of giving the game designer more freedom in producing game structures
and stories. The designer can also use this to reward the player in
certain ways, like risking to take a route which might seem hard, but
that actually becomes a short-cut. It also gives the game a replay-value
for motivated gamers, to explore all possible ways to reach a game’s
end.

Realism: Since the users are a part of the process, the way the games are
generated should be understandable.

5.4.1 Used Algorithm

Graph grammars are used for this task. As mentioned in Section 4.6.2,
graphs are helpful in representing level non-linear structures clearly and
naturally. They are flexible in the way they are created by adjusting the
rules to one’s needs.

5.4.2 Rules

The hardest part of graph grammars is to use the right rules in order to
create the game levels as desired. Since not all rules are equally important,
some should be performed more often than others, thus all rules have a
probability value associated with them. The higher the number, the more

5. Implementation 32

likely it will get chosen over others. Two rules can have the same probability
value.

5.5 Methods

5.5.1 Graph Replacement

Checking for a match of an LHS of a rule and a target graph is not as trivial
as finding a match in string grammars (see Sec. 4.6). Since graphs are non-
linear, in no particular order and in this project also context-sensitive, an
algorithm had to be developed.

There are two categories on how the rules should be applied: the algebraic
and the algorithmic approach.

Algebraic Approach

The algebraic approach was invented by Ehrig et al. [8] in the early 1970s.
For the system to know which nodes of the LHS and RHS belong together
morphism is used, which gives a relation between nodes from both sides.
Every node that exists on the LHS but not on the RHS will be removed
from the graph, and every node that appears in the RHS but not in the
LHS will be added to the graph, while the nodes that have a match stay.
This technique is used to glue the nodes to the graph, since all new nodes
that should be added to the graph are automatically connected to it by
the ones that remain. The algebraic approach is again divided into more
sub-approaches, with the two most common ones being the double-pushout
(DPO) and the single-pushout (SPO) approaches [1]. When a node in a
graph gets deleted, the edges that were connected to that node will end
up pointing to nothing instead. These edges are called dangling edges. The
DPO approach specifies that when a node gets deleted, all edges connected
to that node must also be deleted. The SPO approach on the other hand is
more simple, accepting the deletion of any nodes since dangling edges will
be deleted automatically.

Algorithmic approach

The algorithmic approach has many mechanisms for how to add new graphs.
In this work, we will investigate two: the node-label controlled (NLC) and
the edge-label controlled (ELC) mechanisms.

In the NLC approach, new nodes get connected to the graph with node
labels with the LHS only having one single node called the mother node.
When a match is found, all edges that connect the nodes to the mother
node get deleted. Those nodes are called neighborhood nodes. When the
graph from the RHS is added to the graph, new edges have to be added to

5. Implementation 33

connect this new graph to the target graph. For this to happen, connection
instructions are provided, which are ordered pairs. These however can only
connect to neighbors of the mother node. For example, if an instruction is
(a,b), then each node with the label ‘a’ of the graph, that was a neighbor of
the mother node will be connected to each new node with the label ‘b’. A
disadvantage is that all rules use the same set of connection instructions [1].

The ELC model was presented by Main and Rozenberg [14], and is in-
fluenced by the NLC approach. Instead of a mother node there is a mother
edge. All edges connected to the source and target node of the mother edge
are called neighborhood edges. When a match is found, the mother edge, the
source and target node and all neighborhood edges are deleted from a graph.
Now the RHS of the rule, which is called the daughter graph, is added, which
is not yet connected to the graph. Like in the NLC approach, there are con-
nection instructions which inform how new edges are introduced between
the target graph and the daughter graph.

5.5.2 Used Method

Since the algorithmic approach needs connection instructions, which make
them less controllable, the algebraic approach is chosen for implementation
in this project. Because of that, context-sensitive matching is used, even
though it is more computationally intensive. Also for applying the rules, the
single-pushout method will be used, as taking care of dangling edges by just
removing them appears to be sufficient for the task. Since the order of the
game is important with having pre- and postconditions, directed edges are
used. Loops are not allowed, since an event cannot target itself. This game
has two kinds of events, one being a simple event and one a complex event.
Then there is the start, that does not have a precondition and the last node,
which ends the game. Additionally, a goal node can have a maximum of two
edges connected to it, since there is just one alternative postcondition list.

To start off, a match has to be found. The flowchart diagram in Fig. 5.1
shows how to find a match from a subgraph of the RHS in the graph. It also
shows the case for when there is only one node on the LHS, which can be
ignored for our project, since all rules consist of graphs. The process works
as follows:

1. Find the first node from the pattern in the graph.
(a) If not found, then stop.
(b) Else if the first node is found, find the second node from the

pattern in the graph.
i. If not found, then stop.
ii. Else if the second node is found, check the edge between those

two nodes.

5. Implementation 34

A. If edge not found, go to (b).
B. Else if edge is found and match is complete, return in-

dices.
C. Else if edge is found and match is not complete go to (b),

using the second node here as the first node in (b).
To get a better understanding of the process, the steps to apply a rule are
described. For this example, the rule from Fig. 5.2 will be used on the graph
from Fig. 5.3(a). All steps are labeled, and thus can be referred to in the
same Figure.

1. Choose a rule and match the graph from the LHS with the nodes from
the target graph. If found, the selected nodes for replacement will be
labeled according to the LHS of the rule (Fig. 5.3(b)).

2. Remove all edges between the selected nodes (Fig. 5.3(c)).
3. Replace the labeled nodes with their equivalent nodes on the RHS of

the rule (Fig. 5.3(d)).
4. Add any nodes to the graph that exist on the RHS, but do not have

an equivalent on the LHS (Fig. 5.3(e)).
5. Add the edges as specified by the RHS of the rule (Fig. 5.3(f)).
6. Finally, remove the labels that were added in the first step (Fig. 5.3(g)).

5.6 Converting the Graph to a Game
When applying this algorithm and executing it graphs are built, with one
example shown in Fig. 5.4. The start and end node can be seen, which mark
the beginning and end of the game. In between are several simple event nodes
and one complex event node. The complex event splits into four paths, with
two of them leading to the end goal and two to a dead-end. Now that the
graph generation works, it has to be converted into a playable game file. For
this a converter class is made that checks the type of node and its connection
to other nodes, and thereby gets the information that is needed. To make
it simple at first, every node has a postcondition of being visited, besides
the end node and possible dead-ends which lead to the end of the game.
Every source node from an edge is a precondition to the target node of that
same edge. When the file is created, it can get loaded already by the editor.
However, besides the connection of the events to each other, every field is
empty that would turn the game into a real game. Of course, theoretically
that would be enough for the users to use it and start filling in the gaps. But
that is not enough to convince a user to use that generated game instead of
just making their own from scratch, since it provides no real benefit. They
still have to get the information of how the structure of the game is set,
getting the numbers of events that need to be done until the end is reached

5. Implementation 35

Figure 5.1: Diagram of the graph matching algorithm.

5. Implementation 36

0:A 1:B 0:c 2:C 1:B

Figure 5.2: A representation of a context-sensitive graph rule.

a A
B

b
a 0:A

1:B

b
a 0:A

1:B

b

(a) (b) (c)

a 0:c
1:B

b
a 0:c

2:C

b

1:B

(d) (e)

a 0:c
2:C

b

1:B
a c

C

b

B

(f) (g)

Figure 5.3: The process of graph replacement by using the rule from Fig.
5.2 on the graph seen in (a) is shown from (b) to (g). The graph in (g) is the
final result.

and so on. This is even a drawback, since it gives the user limitations on
how long the game story should take. So it is not enough to just create the
game structure, but it is also necessary to enter some helpful information
into the empty fields to support the user being creative in making a game.

To let the users have more say in how the levels are created, the option of
difficulty was discussed. There are two ways to do this; by creating difficulty
options like easy, medium and hard, or the alternative of letting the user fill
in the parameters. The latter would not make that much sense, since giving
an exact number of how long the game should be makes it seem like the user
already has an idea of a game, which would make this automatic generation

5. Implementation 37

Figure 5.4: A randomly generated graph in the game editor. The letter “S”
stands for “Start Node”, “sE” for “simple Event”, “cE” for “complex Event”
and “E” for “End Node”.

useless. The first idea with the difficulty modes appears to be more fitting
by giving the user freedom to some degree. It was decided that the easy
mode would create a maximum of 10 events and 1 complex event, medium
up to 15 and 2 or 3 complex events and hard with up to 20 events and 4
complex events. The harder the setting, the furthermore the locations can
be from each other.

5.6.1 Filling the Gaps

The easiest way to fill in the gaps would be to use random places, people and
items. A creative person might even end up creating a story around it, but
that seems rather far-fetched. A better idea came up when thinking about
the creation of the difficulty setting. It is not enough to just depend on the
size of the events. The school building is 4 floors high, so having the distance
between the doors as a factor for difficulty seems sensible. The closer the
rooms are, the easier it is to finish the game. Taking this into account, the
starting room can actually be chosen randomly and starting from that origin,
other rooms can be randomly set by considering the distance value. Then,
according to the locations, people and items are chosen that seem to fit to
those places. To make this possible, a database must be set, with each room
having a set of most possible people and items. An example would be the
IT classroom. It will be checked regarding which people are most likely to
be there, which is the teaching staff and with the most expected one being

5. Implementation 38

the IT teacher; then, with a smaller likelihood the principal, the janitor,
secretary and so on. The same goes for the items, which in this example
could be some technical parts, e.g., laptops, phones, hardware components
and so forth. Creating a database like that is a tedious work, but once it is
set, it gives suitable results. The only thing left for the user to do is to come
up with a story and enter that into the dialog field.

5.6.2 Describing the Game

Now that the whole game is set and ready, the whole thing must be conveyed
to the user so he or she can get a notion of the structure. To do this, the
user first gets a graph displayed when a game is created automatically, like
in Fig. 5.5. With this, the visual impaired users can learn visually how the
game is constructed in one view. The blind have the speech assistant to tell
them about the main aspects, like the size, the amount of branches and how
many ways there are to reach the goal. Then the start node gets selected
with the including data, that is the location, the person and the item of
the event. With the Enter key the user jumps to the next node with the
new information. When the player has the overall information, he or she
can start thinking of a story that might fit the given suggestions. That is
not completely necessary, however, since the user can edit any part of each
event at anytime. When the editing starts, the player gets confronted with
the information similar to when the node was selected in the graph. Any
information can be skipped or turned off at any time.

5. Implementation 39

Figure 5.5: The graph window in the game editor with the buttons “Start
editing”, “Generate new Game” and “Back”.

Chapter 6

Evaluation

The goal of the evaluation is to find out whether the users are willing to use
the assistant with the automated creation of levels, and if it is beneficial to
increase the amount of games that can be played later. The method used to
find out this information was by conducting a test where the users can use
the assistant and give feedback at the end. Additionally, they had to answer
an online questionnaire. The evaluation system used a Likert scale, which
measures the degree of agreement with predetermined statements.

6.1 Participants

Nine students (3 males and 6 females) from the BBI participated in the study
voluntarily. Their age ranged from 15 to 23 years (M = 18, SD = 2.28). The
school language of the participants is German; therefore, the whole survey
was conducted in German. However, a translation of the instructions is also
present in the appendix.

First, the participants were questioned about their usage method when
using a PC, where 55.56% specified that they solely depend on screen reader
and/or refreshable braille displays. Another 11.11% use the display visually
and a screen reader together, resulting in two third of the participants need-
ing alternative methods to receive information from a PC.

When they were asked about their user behavior, 88.89% reported that
they use a PC daily for school. However, only 33.33% stated that they use
a PC to play games up to 3 times a week, while the rest practically never
play PC games.

6.2 Task
The task was to let the assistant of the BlindBits editor create a game for
them. Then the participants had to listen to the screen reader that explains

40

6. Evaluation 41

Figure 6.1: Evaluation of the comprehensibility of the screen reader.

the structure of the game with all its contents. When they had a notion of
the whole setup, they could start editing the levels by filling in the dialog
options to complete the game. After they finished, an online survey had to
be completed.

6.3 Data Results
The assessment of these statements was made on a four-point scale con-
sisting of the items “strongly disagree”, “disagree”, “agree” and “strongly
agree”. The number of stages was chosen to be even, to avoid a neutral cen-
tral position and thereby to derive clearer trends from the responses of the
participants. Seven statements were given that had to be graded, and which
will be discussed in the following subsections. At the end, the users had a
chance to give some feedback about the whole project.

6.3.1 Comprehensibility of the Screen Reader

Since most users are dependent on alternatives to visual aids, it is important
that the screen reader is well understood. The statement was: “The screen
reader is understandable”. The results can be seen in Fig. 6.1.

6.3.2 Explanation of the Game Structure

It is important to know if the participants feel that the game structure is
well explained. Otherwise it would be hard to nearly impossible to create

6. Evaluation 42

Figure 6.2: Evaluation of the explanation of the game structure.

sufficient games with the assistant, thus removing its purpose. The statement
was: “The explanation of the structure of the game is well explained and
sufficient”. The results can be seen in Fig. 6.2.

6.3.3 Mental Representation of the Game

Besides having a good explanation of the game, the user should also have
a mental representation of the game. The statement was: “I could imagine
the structure of the game well”. The results can be seen in Fig. 6.3.

6.3.4 Navigation

In order to get a good impression of the game, the user has to repeatedly
go through the events. Therefore, a good navigation system is needed to
reach that requirement. The statement was: “Navigating through the events
is simple and understandable”. The results can be seen in Fig. 6.4.

6.3.5 Overview of the Game

To determine if the users had any difficulties with the editor at any time
presents any flaws in the UI design. The statement was: “I knew what to do
at all times”. The results can be seen in Fig. 6.5.

6.3.6 Usefulness of the Assistant

The whole purpose of the assistant is to push more games out for the Blind-
Bits app, and hence why it is important for the users to see its usefulness

6. Evaluation 43

Figure 6.3: Evaluation of the mental representation of the game.

Figure 6.4: Evaluation of the navigation.

and to actually use it. The statement was: “I can imagine using the assistant
to create games”. The results can be seen in Fig. 6.6.

6.3.7 Speed of the Assistant

Even if the assistant works as desired, it is not adequate as a factor alone.
It must also be faster than a manual creation of a game, otherwise it will

6. Evaluation 44

Figure 6.5: Evaluation of having an overview at all times.

Figure 6.6: Evaluation of the usefulness of the assistant.

not be a motivation to use it. The statement was: “I can imagine that I can
create games much faster with the assistant”. The results can be seen in Fig.
6.7.

6.3.8 User Experience

At the end, the users had four open questions they could fill in voluntarily.

6. Evaluation 45

Figure 6.7: Evaluation of the speed of the assistant.

Suggestions for the improvement for the navigation

Seven participants gave their feedback on this matter. One suggestion was
to be able to use the mouse to select an event in the graph and edit it from
there. Another was to reverse the navigation with the arrow keys, while for
others it was good and sufficient, which means an option in the settings to
choose their navigation style could be helpful.

Suggestions for improvement to describe the game structure

Three people gave their sentiment. One was more a request than a sugges-
tion, by commenting that it should be described better. A different one was
that the structure was okay.

Suggestions for improvement for the automated game creation

Four users had suggestions for this. The first one was that the game should
have more events. This was planned anyway, but for the sake of the time
limit it was chosen that a game should have a maximum of ten events. Two
proposals were about adding information to get the location of the next
event when editing, the purpose being to be able to consider the place to
guide the player properly in the dialog.

Any feedback

If the participants had any additional feedback or criticism that did not
fit into the other questions, they could include it here. Three participants

6. Evaluation 46

had something to say. One was that the experience using the editor had
significantly improved since using it for the last workshop. A second opinion
was to have more possibilities in the game. Unfortunately, this is too vague
and therefore could mean a lot of things. It is assumed that it was meant
having more ways to edit an event. The third idea was about adding sound
effects to events, e.g., hearing a water flow. This is likely to be implemented
in the future.

Chapter 7

Conclusion

7.1 Summary
This work presented the BlindBits project with the editor and game, and
with the addition of an assistant to accelerate the production of games that
are playable for the blind. First, the purpose of O&M training was explained,
with several examples of digital games that incorporated some training tech-
niques to teach blind people skills in a playful way. Then the project was
explained with its purpose, design method and game mechanics. Next, a
short insight into PCG was made with some methods explained and exam-
ples in the game industry that use PCG algorithms.

7.2 Result
The editor has been proven in the workshops to be a tool that works well
in creating games. However, it was a tedious endeavor for some, and thus
making a tool that generates games was virtually essential. Therefore, the
assistant was developed, and the results have shown that the approach was
right and that students can actually gain from this method to create more
games in a much faster fashion. The female participants mostly agreed or
strongly agreed to the statements, except in two cases, where one girl dis-
agreed respectively. However, the male participants disagreed or strongly
disagreed to all the statements. It is assumed that the negative outcome
from the male participants was a result of misunderstanding. The received
feedback on the survey and during the sessions does not fit the data gath-
ered through the Likert scales. Furthermore, during the survey some students
asked whether option 1 or 4 was the best. This might be due to the Austrian
grading system, where 1 is the highest grade.

47

7. Conclusion 48

7.3 Outlook
The next step is to implement the 3D world into the editor and evaluate
it with the target group. Two different control systems have to be consid-
ered; one for the blind and another for the visually-impaired. The idea is
that the visually-impaired students can move freely in a continuous manner,
while the blind have to follow a rail-like approach to prevent them from
hitting walls or undesired places. Additionally, we gathered more ideas for
future extensions that should be addressed in later iterations. A required
extension of the current design is related to familiarizing first-time users. A
tutorial for the game editor is needed that allows users to get to know the
available functionalities. The tutorial should involve step-by-step instruc-
tions for creating a small game where all the necessary elements are used
at least once. For the 3D world, a specific path is prearranged where the
sound cues are introduced one after another. To keep the motivation and
replay value of the game(s) high, meaningful rewards should be added to
the game concept. Thus, to make long-term achievements visible and allow
competition with fellow pupils, the introduction of a scoreboard or reputa-
tion levels needs to be considered. Pupils could, for example, score points by
completing games, depending on the difficulty of a game. Finally, another
idea is to provide a third UI of the editor, by making it available on smart-
phones. Most visually-impaired pupils use their smartphones regularly and
are familiar with making text input. With a mobile version, pupils could
create games while navigating in the real school. Input would be handled
by swiping and tapping. For TTS output, the native TTS engine would be
used.

Appendix A

CD-ROM Content

A.1 Thesis
Pfad: /

Said_Areen_2016.pdf . Master’s thesis as PDF file.

A.2 Study Results
Pfad: /study results

questionnaire.pdf The questionnaire template (German).
questionnaire_english.pdf The questionnaire template (English).
questionnaire_results.pdf Results from questionnaires completed by

study participants (German).

A.3 Project
Pfad: /project

/executable Contains the *.apk file and the *.exe file with
its data needed to run the prototype.

/sourcecode Contains the source code of the Unity
projects.

A.4 Online Literature
Pfad: /literature

Sentient Sketchbook.pdf A copy of the website for the Sentient
Sketchbook.

49

/
Said_Areen_2016.pdf
/study results
questionnaire.pdf
questionnaire_english.pdf
questionnaire_results.pdf
/project
/executable
/sourcecode
/literature
Sentient Sketchbook.pdf

A. CD-ROM Content 50

The Verge - Minecraft.pdf A copy of the website of the “Verge” article
about the Minecraft sales.

The Word of Notch.pdf A copy of the blog from Notch.
Unity Doc.pdf A copy of the website from the Unity Doc.
Wired - No Mans Sky.pdf A copy of the website of the “Wired” article

about No Man’s Sky.

The Verge - Minecraft.pdf
The Word of Notch.pdf
Unity Doc.pdf
Wired - No Mans Sky.pdf

References

Literature

[1] David Adams. “Automatic Generation of Dungeons for Computer
Games”. Bachelor’s thesis. University of Sheffield, Dept. of Computer
Science, May 2002 (cit. on pp. 32, 33).

[2] Kevin Allain et al. “An audio game for training navigation skills of
blind children”. In: Proceedings of the 2nd VR Workshop on Sonic
Interactions for Virtual Environments (SIVE). (Arles). IEEE, Mar.
2015, pp. 49–52 (cit. on p. 8).

[3] James F. Allen, Curry I. Guinn, and Eric Horvitz. “Mixed-initiative
interaction”. Intelligent Systems and their Applications, IEEE 14.5
(Sept. 1999), pp. 14–23 (cit. on p. 16).

[4] Eric Butler et al. “A Mixed-initiative Tool for Designing Level Progres-
sions in Games”. In: Proceedings of the 26th Annual ACM Symposium
on User Interface Software and Technology. UIST ’13. St. Andrews,
Scotland, United Kingdom: ACM, 2013, pp. 377–386 (cit. on p. 14).

[5] Noam Chomsky. “Three models for the description of language”. IRE
Transactions on Information Theory 2.3 (1956), pp. 113–124 (cit. on
p. 18).

[6] Erin C. Connors et al. “Development of an Audio-based Virtual Gam-
ing Environment to Assist with Navigation Skills in the Blind”. Jour-
nal of Visualized Experiments : JoVE 73 (Mar. 2013) (cit. on p. 5).

[7] Joris Dormans. “Adventures in level design: generating missions and
spaces for action adventure games”. In: Proceedings of the 2010 Work-
shop on Procedural Content Generation in Games. ACM. 2010, p. 1
(cit. on pp. 19, 20).

[8] Hartmut Ehrig, Michael Pfender, and Hans Jürgen Schneider. “Graph-
grammars: An algebraic approach”. In: 1973. SWAT’08. IEEE Con-
ference Record of 14th Annual Symposium on Switching and Automata
Theory. IEEE. 1973, pp. 167–180 (cit. on p. 32).

51

References 52

[9] David Eibensteiner. “Prozedurale Generierung von endlosen Land-
schaften mit softwarebasierten Agenten”. German. MA thesis. Hagen-
berg, Austria: Interactive Media; FH Oberösterreich, Fakultät für In-
formatik, Kommunikation und Medien, 2015 (cit. on p. 17).

[10] George Kelly and Hugh Mccabe. “A Survey of Procedural Techniques
for City Generation”. ITB Journal (Institute of Technology Blanchard-
stown) (14 Dec. 2006). Ed. by Dr. Brian Nolan, pp. 87–130 (cit. on
p. 14).

[11] Antonios Liapis, Gillian Smith, and Noor Shaker. “Mixed-initiative
content creation”. In: Procedural Content Generation in Games: A
Textbook and an Overview of Current Research. Ed. by Noor Shaker,
Julian Togelius, and Mark J. Nelson. Springer, 2015. Chap. 11,
pp. 195–214 (cit. on pp. 16, 24).

[12] Antonios Liapis, Georgios N. Yannakakis, and Julian Togelius. “Sen-
tient Sketchbook: Computer-Aided Game Level Authoring”. In: Pro-
ceedings of the 8th Conference on the Foundations of Digital Games.
Society for the Advancement of the Science of Digital Games, 2013,
pp. 213–220 (cit. on pp. 16, 24).

[13] Todd Lubart. “How Can Computers Be Partners in the Creative Pro-
cess: Classification and Commentary on the Special Issue”. Interna-
tional Journal of Human-Computer Studies – Special issue: Computer
Support for Creativity 63.4-5 (Oct. 2005), pp. 365–369 (cit. on p. 16).

[14] Michael G Main and Grzegorz Rozenberg. “Edge-label controlled
graph grammars”. Journal of Computer and System Sciences 40.2
(1990), pp. 188–228 (cit. on p. 33).

[15] Lotfi B. Merabet et al. “Teaching the Blind to Find Their Way by Play-
ing Video Games”. Public Library of Science ONE 7.9 (Sept. 2012).
Ed. by Hugo Theoret, pp. 1–5 (cit. on p. 4).

[16] J. Sánchez, M. Espinoza, and J. Garrido. “Videogaming for wayfinding
skills in children who are blind”. In: Proceedings of the 9th Interna-
tional Conference on Disability, Virtual Reality and Associated Tech-
nologies. (Laval). Ed. by Paul Sharkey and Evelyne Klinger. Reading:
The University of Reading, Sept. 2012, pp. 131–140 (cit. on p. 3).

[17] J. Sánchez and J. P. Rodríguez. “Videogame for improving orientation
and mobility in blind children”. In: Proceedings of the 8th International
Conference on Disability, Virtual Reality and Associated Technologies.
(Viña del Mar / Valparaíso). Ed. by Paul Sharkey and Jaime Sánchez.
Reading: The University of Reading, Sept. 2010, pp. 299–303 (cit. on
p. 3).

References 53

[18] Jaime Sánchez and Miguel Elías. “Guidelines for Designing Mobility
and Orientation Software for Blind Children”. In: Proceedings of the
11th IFIP TC 13 International Conference on Human-Computer In-
teraction. Ed. by Cécilia Baranauskas et al. INTERACT 2007. Rio de
Janeiro, Brazil: Springer-Verlag Berlin, Heidelberg, 2007, pp. 375–388
(cit. on p. 3).

[19] Jaime Sánchez and Matías Espinoza. “Audio Haptic Videogaming for
Navigation Skills in Learners Who Are Blind”. In: Proceedings of the
13th International ACM SIGACCESS Conference on Computers and
Accessibility. (Dundee). ASSETS ’11. New York, NY: ACM, Oct. 2011,
pp. 227–228 (cit. on p. 4).

[20] Jaime Sánchez, Mauricio Sáenz, and Miguel Ripoll. “Usability of a
Multimodal Videogame to Improve Navigation Skills for Blind Chil-
dren”. In: Proceedings of the 11th International ACM SIGACCESS
Conference on Computers and Accessibility. Assets ’09. Pittsburgh,
Pennsylvania, USA: ACM, 2009, pp. 35–42 (cit. on p. 3).

[21] Jaime Sánchez et al. “A Model to Develop Videogames for Orienta-
tion and Mobility”. In: 12th International Conference on Computers
Helping People with Special Needs (ICCHP), July14-16, 2010, Pro-
ceedings, Part II. Ed. by Klaus Miesenberger et al. ICCHP. Vienna,
Austria: Springer-Verlag Berlin, Heidelberg, 2010, pp. 296–303 (cit. on
p. 10).

[22] Gillian Smith, Jim Whitehead, and Michael Mateas. “Tanagra: Reac-
tive Planning and Constraint Solving for Mixed-Initiative Level De-
sign”. IEEE Transactions on Computational Intelligence and AI in
Games 3.3 (Sept. 2011), pp. 201–215 (cit. on p. 24).

[23] Grace P. Soong, Jan E. Lovie-Kitchin, and Brian Brown. “Does mo-
bility performance of visually impaired adults improve immediately
after orientation and mobility training?” Optometry and Vision Sci-
ence 78.9 (2001), pp. 657–666 (cit. on p. 3).

[24] George Stiny et al. “Introduction to shape and shape grammars”. En-
vironment and Planning B 7.3 (Nov. 1980), pp. 343–351 (cit. on p. 20).

[25] George Stiny and James Gips. “Shape Grammars and the Generative
Specification of Painting and Sculpture”. In: International Federation
for Information Processing Congress 71. (Ljubljana). Ed. by C. V.
Freiman. Vol. 2. Amsterdam, 1971, pp. 1460–1465 (cit. on p. 20).

[26] Julian Togelius, Noor Shaker, and Joris Dromans. “Grammars and
L-systems with applications to vegetation and levels”. In: Procedural
Content Generation in Games: A Textbook and an Overview of Cur-
rent Research. Springer, 2016. Chap. 5, pp. 73–98 (cit. on pp. 19, 20).

References 54

[27] Julian Togelius et al. “Search-based Procedural Content Generation”.
In: Applications of Evolutionary Computation. Vol. 6024. Lecture
Notes in Computer Science. Springer, 2010, pp. 141–150 (cit. on p. 14).

[28] Julian Togelius et al. “What is Procedural Content Generation? Mario
on the Borderline”. In: Proceedings of the 2nd International Work-
shop on Procedural Content Generation in Games. PCGames ’11. Bor-
deaux, France: ACM, 2011, 3:1–3:6 (cit. on p. 14).

[29] Nikolaos Vlavianos, Stavros Vassos, and Takehiko Nagakura. “Towards
a novel method for Architectural Design through µ-Concepts and Com-
putational Intelligence”. In: Proceedings of the 1st Workshop on Arti-
ficial Intelligence and Design. (Ferrara). Ed. by Francesca Alessandra
Lisi and Stefano Borgo. Sept. 2015, pp. 55–60 (cit. on p. 16).

[30] Georgios N. Yannakakis and Julian Togelius. “Experience-Driven Pro-
cedural Content Generation”. IEEE Transactions on Affective Com-
puting 2.3 (July 2011), pp. 147–161 (cit. on p. 14).

Films and audio-visual media

[34] Firaxis. Sid Meier’s Civilization IV. Game [Windows, Mac OS]. Oct.
2005. url: http://www.2kgames.com/civ4/home.htm (cit. on pp. 14,
15).

[35] Hello Games. No Man’s Sky. PlayStation 4, Microsoft Windows. Aug.
2016. url: http://www.no-mans-sky.com/ (cit. on p. 22).

[31] Markus Persson. Minecraft. Game [Windows]. May 2009. url: https:
//minecraft.net/ (cit. on pp. 14, 21).

[32] Bethesda Game Studios. The Elder Scrolls: Oblivion. Game [Windows,
PlayStation 3, Xbox 360]. Mar. 2006. url: http://www.elderscrolls.
com/oblivion (cit. on p. 15).

[33] Valve. Counter-Strike. Game [Windows, Xbox, Mac OS]. Nov. 2000.
url: http://store.steampowered.com/app/10/ (cit. on p. 17).

Online sources

[36] Chris Higgins. No Man’s Sky would take 5 billion years to explore.
English. Ed. by Wired. Aug. 2014. url: http://www.wired.co .uk/
article/no-mans-sky-planets (visited on 09/11/2016) (cit. on p. 23).

[37] Antonios Liapis. Sentient Sketchbook: Computer-Assisted Game Level
Authoring. English. 2013. url: http://www.sentientsketchbook.com/
(visited on 08/20/2016) (cit. on p. 24).

http://www.2kgames.com/civ4/home.htm
http://www.no-mans-sky.com/
https://minecraft.net/
https://minecraft.net/
http://www.elderscrolls.com/oblivion
http://www.elderscrolls.com/oblivion
http://store.steampowered.com/app/10/
http://www.wired.co.uk/article/no-mans-sky-planets
http://www.wired.co.uk/article/no-mans-sky-planets
http://www.sentientsketchbook.com/

References 55

[38] Markus Persson. Terrain generation, Part 1. Mar. 2011. url: http://
notch.tumblr.com/post/3746989361/terrain-generation-part-1 (visited
on 09/17/2016) (cit. on p. 21).

[39] Unity Technologies. Building Plugins for Android. Aug. 2016. url:
https://docs.unity3d.com/Manual/PluginsForAndroid.html (visited on
08/17/2016) (cit. on p. 30).

[40] Tom Warren. Minecraft sales top 100 million. English. Ed. by The
Verge. June 2016. url: http : / / www . theverge . com / 2016 / 6 / 2 /
11838036 / minecraft - sales - 100 - million (visited on 09/12/2016) (cit.
on p. 21).

http://notch.tumblr.com/post/3746989361/terrain-generation-part-1
http://notch.tumblr.com/post/3746989361/terrain-generation-part-1
https://docs.unity3d.com/Manual/PluginsForAndroid.html
http://www.theverge.com/2016/6/2/11838036/minecraft-sales-100-million
http://www.theverge.com/2016/6/2/11838036/minecraft-sales-100-million

	Declaration
	Acknowledgments
	Kurzfassung
	Abstract
	Introduction
	Motivation
	Objective
	Structure

	Orientation and Mobility Training
	Definition
	Playful Learning
	Tools
	Audio Game Maker
	Blastbay Game Toolkit

	Examples
	AbES
	Audio Haptic Maze
	MOVA3D
	Legend of Iris

	The BlindBits Project
	Design Method
	The Game
	Game Mechanics
	Level Editor
	Text-Based Editor
	3D-Model Editor

	Procedural Content Generation
	Definition
	Types of PCG
	Online and Offline Algorithms
	Randomness in PCG
	Stochastic and Deterministic approaches

	Mixed-Initiative PCG
	Mixed-Initiative Interaction
	Computer-Assisted or Computer-Aided Design

	Genetic Algorithms
	Brute-Force Search Algorithm
	Generative Grammars
	Shape Grammars
	Graph Grammars

	Examples in Games
	Minecraft
	.kkrieger
	No Man's Sky

	Examples in Tools
	SpeedTree
	Tanagra
	Sentient Sketchbook

	Implementation
	Framework
	Editor
	Game Data
	User Interface
	User Interface Element Adjustments

	Mobile
	User Interface
	Java Native Interface

	Assistant
	Used Algorithm
	Rules

	Methods
	Graph Replacement
	Used Method

	Converting the Graph to a Game
	Filling the Gaps
	Describing the Game

	Evaluation
	Participants
	Task
	Data Results
	Comprehensibility of the Screen Reader
	Explanation of the Game Structure
	Mental Representation of the Game
	Navigation
	Overview of the Game
	Usefulness of the Assistant
	Speed of the Assistant
	User Experience

	Conclusion
	Summary
	Result
	Outlook

	CD-ROM Content
	Thesis
	Study Results
	Project
	Online Literature

	References
	Literature
	Films and audio-visual media
	Online sources

