
Evaluation of Gammaton Tracing for
Texture Synthesis of Weathered Materials

Philipp Stadler

M A S T E R A R B E I T
eingereicht am

Fachhochschul-Masterstudiengang

Interactive Media

in Hagenberg

im September 2018

© Copyright 2018 Philipp Stadler

This work is published under the conditions of the Creative Commons License Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)—see https://
creativecommons.org/licenses/by-nc-nd/4.0/.

ii

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Declaration

I hereby declare and confirm that this thesis is entirely the result of my own original
work. Where other sources of information have been used, they have been indicated
as such and properly acknowledged. I further declare that this or similar work has not
been submitted for credit elsewhere.

Hagenberg, September 25, 2018

Philipp Stadler

iii

Contents

Declaration iii

Preface vii

Abstract viii

Kurzfassung ix

1 Introduction 1
1.1 Motivation . 1
1.2 Aims . 2
1.3 Overview . 2

2 Related Work 4
2.1 Weathering Classification . 4

2.1.1 Attack Classes . 5
2.1.2 Chemical Attacks . 5
2.1.3 Biological Attacks . 5
2.1.4 Mechanical Attacks . 6

2.2 Physically-Based Simulations . 6
2.2.1 Metallic Patinas . 7
2.2.2 Flow . 9

2.3 Transfer Techniques . 12
2.3.1 Appearance Manifolds . 12
2.3.2 Context-Aware Textures . 12

2.4 Phenomenological Models . 14
2.4.1 Weathering in Texture Space . 15
2.4.2 𝛾-ton Tracing . 15
2.4.3 𝜇-ton Simulation . 17
2.4.4 Interactive 𝛾-ton Tracing . 19

3 Implementation 21
3.1 Overview . 21
3.2 Requirements . 22
3.3 Architecture . 23

3.3.1 Organisation . 23

iv

Contents v

3.4 Surface Model . 24
3.4.1 Surface Sampling . 25

3.5 Particle Model . 28
3.6 Tracing . 28

3.6.1 State Transitions . 29
3.6.2 Intersection Tests . 29

3.7 Interaction . 32
3.7.1 Motion Deterioration . 33
3.7.2 Substance Transport . 34
3.7.3 Ageing Rules . 35

3.8 Texture Synthesis . 36
3.8.1 Position Texture . 38
3.8.2 Surfel Association Texture . 38
3.8.3 Substance Texture . 39
3.8.4 Appearance Rendering . 39
3.8.5 Texture Irregularities Compensation 41

3.9 Optimizations . 43
3.9.1 Parallelism . 43
3.9.2 Spatial Data Structures . 44

4 Evaluation 46
4.1 Methodology . 46

4.1.1 Physical Validity . 47
4.1.2 Runtime Performance . 48

4.2 Corrosion . 51
4.2.1 Patterns . 51

4.3 Simulation Design . 54
4.3.1 Scene . 55
4.3.2 Emission . 55
4.3.3 Material Properties . 56
4.3.4 Interaction . 56
4.3.5 Ageing Rules . 56
4.3.6 Effect Setup . 57

4.4 Results . 57
4.4.1 Physical Validity . 58
4.4.2 Runtime Performance . 65
4.4.3 Practical Applicability . 69

5 Conclusion 70
5.1 Limitations . 71
5.2 Further Prospects . 72

5.2.1 Scalability . 72
5.2.2 Mechanical Phenomena . 72
5.2.3 Texture Synthesis . 72

A DVD Contents 74
A.1 Root Directory . 74

Contents vi

A.2 Binaries . 74
A.3 Source Code . 75
A.4 Evaluation Hardware Specifications . 75
A.5 Simulations . 75

References 77
Literature . 77
Online sources . 79

Preface

The following thesis has been made possible with the support of many helping hands.
Specifically, I would like to give credit to the following institutions (in alphabetical
order) for sharing their work under permissive licenses, so they could be utilised in the
presented research and implementation:

• Blender was used for modelling and texturing of simulation scenes as well as
rendering of simulation results,

• Mozilla Research originally developed the programming language Rust, used for
implementation,

• the Stanford Computer Graphics Laboratory provided the Stanford Buddha Model
and the Stanford Bunny Model, which have been valued for a long time by the
graphics community as effective test geometry, and indeed were of great help for
weathering simulation of complex surfaces.

Finally, I would like to thank all of the people who provided me with personal support
during this time. First of all, I would like to thank DI Roman Divotkey for his support
and kind words in his function as my thesis supervisor. I also thank my family and
friends for their love and support.

vii

Abstract

The devised weathering solution aitios is a variation of 𝛾-ton tracing specifically opti-
mised for texture-based workflows. aitios facilitates the procedural weathering of mate-
rials in virtual scenery. Ageing-inducing particles are traced from sources in the scene
to simulate the emission and transport of weathering-inducing substances throughout
the scene. Resulting substance distributions drive additional texture synthesis to create
texture maps for use in physically-based rendering. The work contains an evaluation of
the practical applicability of the technique, especially regarding runtime performance
and physical validity of results.

viii

Kurzfassung

Die entwickelte Lösung für Materialalterung aitios ist eine Variation des 𝛾-ton Tracing-
Verfahrens. aitios ermöglicht es, Materialien in virtueller Szenerie prozedural zu altern.
Alternde Teilchen werden von Quellen ausgehend durch die Szene verfolgt, um Aus-
sendung und Transport alterungserzeugender Substanzen zu simulieren. Die sich erge-
benden Substanzverteilungen werden weiter zur Textursynthese für die Verwendung in
Physically-based Rendering verwendet. Die Arbeit enthält eine Evaluierung der prakti-
schen Anwendbarkeit des Verfahrens für Textursynthese, in der besonders das Laufzeit-
verhalten und die physikalische Sinnhaftigkeit der Ergebnisse analysiert werden.

ix

Chapter 1

Introduction

The history of computer graphics is a collaborative effort of the scientific community
along with artists and developers to create an illusion of reality of ever-increasing qual-
ity. It has been possible for dozens of years to faithfully reproduce the appearance of a
perfectly smooth and spherical glass ball inside a box, lit by a point light source. Much
thought has since then gone into the rendering of less idealised objects with more com-
plex surfaces. As an important milestone, the advent of texture mapping, pioneered by
Edwin Catmull in the mid-seventies, allowed for the adding of surface detail by encod-
ing spatially varying properties of surfaces such as albedo, displacement and reflectivity,
allowing renderings of many types of virtual objects to appear more lifelike. An impor-
tant aspect of a realistic set of texture maps for an object is the presence of blemishes
and surface imperfections. The following thesis presents a variation of the 𝛾-ton tracing
algorithm originally proposed by Chen, Xia, Wong, Tong, Bao, Guo and Shum in 2005,
and investigates its applications to texture synthesis of sequences of weathered surfaces,
tailoring blemishes to scene geometry and weathering sources.

1.1 Motivation
The advent of textured objects in computer graphics provided artists with an effective
means of taking weathering effects into account when designing the surfaces of objects.
Such effects include visible signs of ageing such as scratches, dust and corrosion. The pro-
cess of creating convincing weathered textures has traditionally been a labour-intensive
one, requiring large amounts of human intervention, even with modern tooling such as
Substance Designer1. Weathering effects spanning multiple objects in the final scene,
such as rust dripping from a leaky pipe onto the floor below, being hard to mimic man-
ually, are usually not taken into account. While it is often sufficient to model a single
point in time, obtaining consecutive states of ageing requires either additional human
intervention or even a repetition of the process.

When the first version of the presented 𝛾-ton tracing variation has been designed and
implemented under the name of aitios, a consistent re-implementation of the original al-
gorithm was the initial goal. The high level concept proposed by the original publication

1Substance Designer is a material authoring software developed by Allgeorithmic SAS and available
at https://www.allegorithmic.com/products/substance-designer.

1

https://www.allegorithmic.com/products/substance-designer

1. Introduction 2

was clearly defined, and fascinating in its apparent simplicity. Yet, this original publi-
cation remained fuzzy in some details, making an exact re-implementation infeasible.
When preparing a simulation, how are surfels distributed? How, exactly, do particles in
flow move over complex surfaces? How can textures for rendering be prepared from the
surfels? Over the course of time, filling in unknowns in the process, aitios has grown
into its own variation with both classical and some novel aspects. Well-defined, concrete
solutions for unclear parts of the tracing algorithm are the first main contribution of
this thesis.

A local intensity of ageing is often referred to as weathering degree in literature. 𝛾-ton
tracing in general heavily concentrates on calculation of such blemish distributions and
can be considered an adequate approximate solution to this problem. Texture synthesis
based on this distribution, by contrast, is treated as a marginal aspect by classical 𝛾-
ton tracing and many later extensions. The presented variation proposes a conversion
technique of the point cloud-like surfel tree to greyscale mask textures, indicating the
distribution of blemishes over the surface in a way that better integrates with existing
rendering pipelines and other tooling. Building on substance textures, a weathering
effect pipeline based on blending and layering is proposed, that generates final weathered
appearances. This texture synthesis approach is the second main contribution offered
by this work.

1.2 Aims
To overcome the limitations of popular techniques in the industry, a variation of 𝛾-
ton tracing will be defined and evaluated as a potential alternative. The algorithm
simulates material ageing in scenes by generating new textures. The base algorithm
is an iterative, probabilistic approach that simulates the emission and propagation of
weathering-inducing substances as ageing-inducing particles that are traced through the
scene. Result of the substance simulation is a set of surface samples with associated local
concentrations of substances. This set is denoted a 𝛾-ton map and organized in a spatial
data structure for efficient access. Such a 𝛾-ton map, holding the local concentrations
of substances, guides the iterative re-texturing of the scene using texture synthesis
techniques after each iteration, generating variations of the scene in consecutive stages
of ageing. The technique should at least be applicable to the two forms of chemical
weathering presented: rusting corrosion and patination on surfaces. The applicability
depends primarily on the convincingness of the results, secondarily on performance
with sufficiently complex scenery.

1.3 Overview
After this introductory chapter, the rest of this document is organised as follows:

• Chapter 2 outlines a model of weathering and the state of the art in procedural
time-varying appearance modelling,

• chapter 3 provides insight into the specific course taken in the implementation
used for the evaluation,

1. Introduction 3

• chapter 4 first outlines the methodology of evaluation and then puts the developed
ideas to the test,

• next, chapter 5 summarises the results of the evaluation, outlines potential for
future extension of the work, and provides some closing remarks.

Chapter 2

Related Work

This chapter first defines a taxonomy and a model of weathering as a whole. On that
basis, the rest of the chapter provides an overview of the state of the art in weathering
simulation techniques.

Automation of aspects of time-varying appearance modelling became an increasingly
active field of research over the past two decades. Techniques for obtaining surfaces with
imperfections typically rely on one or more of the following:

1. manual design by artists,
2. physical measurement,
3. simulation.

The thesis is primarily concerned with the latter. However, most simulation techniques
overlap with the first two by requiring human intervention or measurement data. To dif-
ferentiate simulation techniques for weathering, three main types are defined to organise
the chapter.

Physically-based simulations, described in section 2.2, primarily model known physi-
cal or chemical phenomena based on domain-specific knowledge. This typically provides
quite accurate results within a limited scope of weathering problems, mostly at the cost
of intensive computation.

Solutions that employ a transfer technique include various models that primarily
analyse input samples of weathered objects, such as photographs or BRDF measure-
ments, and aim to convincingly apply these measurements to virtual objects, yielding
an aged appearance. Section 2.3 provides an overview over select techniques of this type.

Finally, phenomenological approaches aim for convincing approximations based on
models not directly derived from physical or chemical research, attempting to provide
more general models at lower computational cost. Techniques of this class, to which
𝛾-ton tracing has been assigned, are described in section 2.4.

2.1 Weathering Classification
Before presenting actual weathering simulation techniques, some taxonomy definitions
for the underlying processes being modelled are necessary. Gradual appearance changes
to objects when exposed to environment conditions are mostly referred to with the
umbrella terms weathering [2–4, 6, 26] or simply ageing or decay [17] within the field.

4

2. Related Work 5

The following work shall stick to this convention, using weathering and ageing as inter-
changeable concepts, caused by attack classes as outlined in section 2.1.1.

In contrast to uses in geology, literature in time-varying appearance modelling some-
times does not treat erosion as a completely distinct concept, instead applying weather-
ing to many ageing processes, often including erosion on the level of individual objects,
but not on entire landscapes. Classical 𝛾-ton tracing, for instance, uses the term erosive
weathering for deformations from erosion [4].

2.1.1 Attack Classes
Lu et al. propose to classify ageing effects by the type of process responsible for the
change in appearance, namely:

• chemical,
• mechanical,
• biological [18].

They further suggest cascading different processes using their approach, such as chemical
corrosion with mechanical crackling [18].

Mérillou and Ghazanfarpour re-iterate on the taxonomy in their weathering survey,
referring to the types of processes as attack classes on a perfectly clean reference surface
with smooth geometry. They further emphasise that the attack classes often affect real
surfaces simultaneously and may often depend on each other [19]. As exemplified by
metallic corrosion, a process might start as a chemical process, but cause large-scale
mechanical changes in the long run. The three attack classes are better understood as a
spectrum on which to place specific effects. Thus, realistic material ageing often requires
taking effects of all classes into account.

They further emphasise the distinction between weathering and manufacturing-
related material properties and defects, such as the initial roughness and porosity, which
may not be attributed to weathering and instead are initial properties of the reference
surface [19]. However, these properties are often of major importance in the weathering
process.

2.1.2 Chemical Attacks
This kind of attack affects objects on a chemical level, leading to changes in the material
composition of objects, in turn leading to changes in physical characteristics [18]. For
example, a copper statue exposed to water and air will eventually develop patina, a
film of chemically altered material on the surface [9]. These composition changes mostly
affect the surface of objects but can also lead to large-scale geometric changes, e.g., in
destructive corrosion [19]. Some examples of this attack class are: patina and rusting
corrosion (see figure 2.1), acidic corrosion, burning and limescale deposition. Chemical
attacks are the main focus of the thesis.

2.1.3 Biological Attacks
This class describes effects caused by living organisms including mould and other fungi
as well as algae [18]. Changes by biological processes involve geometry deformation,

2. Related Work 6

(a) (b) (c)

Figure 2.1: Metal structures with corroded surfaces exemplify chemical attacks. Note
the geometry-dependent variations. Artefacts tend to develop flow patterns on vertical
surfaces. In (a), rust dissolved in water gets deposited on the floor below.

the addition or removal of geometry and structural changes. Some examples include:
rotting, colonization by funghi and plants.

Micro-organisms affecting interior and surface of objects are a special case and can
also be seen as an instance of chemical attacks, since the distinction is not always
clear in such cases. Mérillou and Ghazanfarpour thus propose “to classify each process
that deals with organic materials as biological, and the others as chemical” [19]. This
definition still leaves room for interpretation in the case of microbial weathering in rocks,
where micro-organisms produce weathering-inducing organic chemicals, in which case an
organic weathering source induces chemical weathering. Therefore, for the purposes of
this thesis, only processes where organisms that are directly observable with the naked
eye colonize either organic or inorganic objects shall be referred to as biological attacks.
By this definition, the previously provided examples are included. However, it does not
apply to dehydration and wrinkling of an organic target material, which would instead
be classified mechanical.

2.1.4 Mechanical Attacks
These effects occur due to mechanical impacts [18] or material stress. Such effects can
have natural causes, such as the exposure to varying temperatures, wind and weather [9].
These changes usually remove material or lead to splitting of the object. Some examples
include: cracks and fractures, scratches, dimples due to impacts of objects. These effects
can be the cause of large-scale changes to both the geometry and the surface of objects.

2.2 Physically-Based Simulations
This simulation type can be set apart from others in that weathering models are based
on domain-specific knowledge derived from physical and chemical research. This requires
that the underlying process is both known and a large part of it well-understood. In
most cases, parts of the model have to be approximated. Hence, the term physically-
based is favoured over “physical”. Approximations can simply reduce computation time

2. Related Work 7

(a) (b)

(c) (d)

Figure 2.2: Thirty years of patination (six-year increments) on copper strips in marine
(a), rural (b) and urban (c) environments simulated with the Dorsey/Hanrahan patination
technique. (d) shows the same technique on a complex, scanned model [6].

or account for aspects of a phenomenon that are not well-understood.
Depending on the complexity of the underlying model, computation cost can be

intense. The model may require artist-specified or measured parameters for object com-
positions and the environment. Finding the correct parameters to achieve a certain look
can be a daunting task.

Many such specialised algorithms have been proposed to simulate well-understood
mechanical, chemical or biological phenomena using a model that aims to approximate
the real-world effect as closely as possible with domain-specific knowledge [9]. While
physically-based is a common term for this class of techniques within the discourse [16,
17], some refer to it as semi-physical [11]. Depending on the degree of approximation
involved, some authors prefer the term phenomenological [7], which is used to describe
a distinct class of algorithms in this work (see section 2.4).

2.2.1 Metallic Patinas
Julie Dorsey and Pat Hanrahan present an approach for the modelling and rendering of
metallic patinas. Since no experimental data to support a completely accurate physical
simulation was available at the time, the approach is phenomenological, but based on a
detailed chemical model. Material available in the environment and geometric consider-
ations are accounted for [6]. The degree of physical insight warrants the use of the term
physically-based.

2. Related Work 8

Patina Model

Drawing on earlier work, the researchers attribute patination primarily to atmospheric
corrosion. Patinas are highly layered, with individual layers being visible in a cross-
section of patinated metal [6].

In the case of copper exposed to atmospheric conditions, being the main focus of the
paper, a brown layer of tarnish quickly forms. This layer gradually changes into reddish-
brown color, indicating the presence of copper oxide or mineral cuprite. The next layers
take significantly longer to form and consist of more copper oxides but also copper sul-
phides and copper salts. Copper sulphide is a dark brown color, but surprisingly shiny
since it forms metallic crystal structures. Copper salts, such as sulphates, chlorates
and nitrates, come in different colours, with sulphates contributing the characteristic
greenish color of aged copper. The minerals formed differ in marine, rural and urban
environments, due to different materials available for chemical reactions. For the visual
effects of different environments see figure 2.2. Local wetness also influences patination,
with horizontal or inclined surfaces patinating more rapidly due to more available stag-
nant water. Other factors, such as temperature and variations in surface thickness are
also deemed to have an influence on the patination process but are deliberately ignored
since their influence is not well-understood [6].

Patina material is modelled as a stack of 𝑛 layers. Every layer has an assigned
thickness, albedo, roughness and subsurface scattering properties. Layer 0 represents
the base material and is assumed to have infinite thickness. All other layers have a
zero or positive thickness. The combined thickness of all layers except the base layer
is assumed to be small in comparison to the covered area. The authors further suggest
techniques for the rendering of the simulated layered structure (see figure 2.2 (d)) in
ray tracing contexts [6].

Operators

To model patina evolution, layers are affected by operators in a pre-configured sequence.
Multiple types of operators are available.

• The coat operator applies a new layer of material with a maximum thickness. The
maximum thickness is modulated with the thickness of the layer below.

• By applying an erode operator, a desired amount of thickness is removed, starting
at the top layer, until the desired amount is reached. The process possibly exposes
underlying layers.

• Fill applies material up to a given absolute height above the base material. This
simulates deposition in cracks.

• With the polish operator, material can be removed until a given absolute height,
smoothing the surface.

• Offset first uniformly applies a thick coat, then removes parts of the coat that are
accessible to a spherical probe. The accessibility calculation is performed using
the method proposed by Miller [6, 21].

2. Related Work 9

Growth Models

If the operators alone were used for simulation, the result would lack the visual richness
of real patina. Specifically, variations and detail must be added. For this purpose, the
researchers employ several growth models. They point out that the models can not only
be selected by the user but can also be influenced by surface geometry and environment
factors. The presented growth models are:

• Steady thickening uniformly samples a small number of points, assigns a thickness,
and increases thickness by a user-specified growth rate. Interpolation is performed
in between sample points. Subtle noise is additionally added for a more natural
look, yielding a relatively even weathering pattern.

• Random deposition lets a particle move vertically from a sampled point above the
surface, resulting in a quite rough surface.

• Random deposition with surface relaxation additionally allows for the particle to
diffuse to neighbouring surface points with a lower height and up to a finite dis-
tance, yielding smoother surfaces compared to standard random deposition with-
out surface relaxation.

• Ballistic deposition also starts on a random position above the surface, falling
straight down until it hits a surface, where it now deposits material, either in-
creasing the height by one, or setting it to the height of a neighbouring surface
point, if one is thicker, yielding lateral growth patterns.

• Directed percolation depinning employs growable patches on a 2D lattice of blocked
and unblocked cells, with unblocked cells indicating the presence of water. Patches
spread outward to their neighbours, preferring unblocked cells.

The presented growth models are described by the researchers as a “black box” for
aspects of patina formation that are not yet fully understood. As soon as additional
information about patina formation is available, the growth models could be replaced
by more physically accurate ones [6].

2.2.2 Flow
Dorsey et al. present a particle-based system to model the weathering effects of flowing

water on virtual objects. Water particles are modelled with a mass and amounts of
dissolved materials, as well as position and velocity. Differential equations describe the
rules for movement as well as exchange of water and dissolved materials from and to
surfaces. Potential stain-inducing dissolved agents are: exhaust, bird droppings or dirt
[7]. Figure 2.3 shows a rendering of a statue with stains shaped by water flow.

Water Model

The approach simulates a range of natural effects with a rather simple model. An ar-
rangement of water sources forms on the object. The primary way for water sources to
form is at parts more exposed to rain. Also, splashback occurs when a wall meets the
ground, having dirt splatter from the ground a short distance up the wall, flowing down
again from there. Primary flow describes the flow from sources in direction of gravity,
and influenced by obstacles. This flow typically breaks up into several streams. The

2. Related Work 10

(a) (b)

Figure 2.3: Flow simulation by Dorsey et al. on a statue. Model without flow patterns
for comparison (a). Flow patterns are clearly visible after simulation (b).

formed patterns are often self-reinforcing. Secondary flow may occur when a particle
falls off a surface and continues its path in direction of gravity. Interaction of water
with a surface is governed by absorptivity (rate of water uptake) and absorption (the
capacity of the surface to absorb water). Once a patch of the surface gets increasingly
saturated with water, absorptivity decreases in a material-dependent manner. If not all
of the incident water can be absorbed any more, surface runoff occurs. Since exposed
parts are saturated first, water runs off to dryer regions below. These dryer regions will
too get saturated until their absorption rate is lower than the amount of incident water,
continuing flow further down. Differential flow occurs when flow crosses material bound-
aries and transports stains. This can happen with many materials such as concrete and
corroded metals, where material is dissolved and transported in flow direction. Also,
when a highly absorbing material is placed under a low-absorptivity material, flow from
the top material causes intense staining in the material below, where dissolved mate-
rial is deposited. Saturation staining is a mostly darkening material-dependent effect,
limited to areas with high exposure [7].

Simulation

Given UV-mapped geometry with assigned materials as well as the concentration of
materials in water, simulation is performed. Surface properties, such as saturation and
deposits, are stored and indexed in textures. An initial distribution of particles on the
surface is generated based on exposure to rain. The rain direction is based on a random
variation of wind direction. On its path, a particle loses mass due to evaporation and
absorption of the underlying surface. Evaporation can be modelled with pre-computed
total solar irradiance, which includes shadowing. Absorption is controlled by differential
equations involving particle and surface. Once no more mass is left, the particle can be
removed from the simulation. Also, particles may dissolve material in one location to
drop it in another. This sedimentation process has its own set of coupled differential
equations, controlled by solubility and adhesion. Solubility describes the rate of water to

2. Related Work 11

pick up a specific substance. Conversely, adhesion controls redeposition onto surfaces.
Particle motion is governed by gravity, friction, self-repulsion and diffusion. With one
exception, this motion is restricted to surfaces. To this end, velocity is projected on
the tangential plane of a patch of geometry, possibly crossing patch boundaries. The
exception allows for secondary flow: If the angle between particle velocity and tangent
direction of the patch surpasses a critical value, the particle instead follows gravity
through a pre-computed landing position table. Similarly, an abrupt change in surface
normals indicates an obstacle. A probability distribution determines whether the path
should be continued or diverge in this case. To implement patch transitions effectively,
the geometry data structure provides fast access to neighbouring patches. To account
for diffusion on rough surfaces, two approaches are proposed. The first approach works
with a scalar roughness. A random force offset on the tangential plane can be applied,
scaled by the surface roughness. The alternative roughness model works with displaced
surfaces. The displacement map perturbs the surface normals to form a displaced mesh.
Now, after projecting the force vector on the original tangential plane, it is again pro-
jected onto the perturbed plane to form a new vector. This causes water to collect in
cracks and valleys and flow more slowly over bumpy surfaces. The researchers further
propose a rendering technique: To obtain the final texture maps for albedo, the colours
of sediments are summed, each weighted by the final concentration. Similarly, an alpha
value is computed for blending with the original texture. To simulate wetness, diffuse
reflectivity is modulated with surface saturation [7].

The approach imposes implicit limitations on simulation meshes: Texture regions of
triangles may not overlap, since surface properties are encoded in textures and re-using
them would lead to unwanted bleeding of substance concentrations and other surface
properties from one region to another. However, a uniform texel scale is not required,
since the simulation equations are defined in terms of surface area and particle mass.
Further, regarding mesh topology, the patch transitions of flowing particles effectively
require proper 𝑛-manifold geometry. A problematic situation occurs if three or more
faces share the same edge, in which case it is unclear which face the particle would
transition to. One example of this type of problematic non-manifold would be a mesh
consisting of two equally-sized cubes sharing exactly one edge (four faces meet at one
edge). Given only valid geometry, individual meshes should further not overlap to pre-
vent particles from entering the interiors of objects when following the surface of another
object. For instance, if an iron bar is stuck in a rock, flowing particles will not transition
to the rock, but follow the surface of the iron bar inside the object, unless precautions
are taken for this case.

Each surface in the simulation requires a set of nine texture maps. It is left un-
specified how these textures are indexed for surface interactions. One possible solution
would be to index the nearest texel to the position of a particle in UV space. If it is
assumed that a particle may move by more than one texel at a time, multiple texels
could instead be indexed with a filtering scheme, taking into account the distance to
the actual particle.

2. Related Work 12

2.3 Transfer Techniques

Ageing models based on transfer, often referred to as data-driven [16] or measurement-
based, analyse and process systematic measurements of decaying objects in the phys-
ical world to synthesise a similar appearance on virtual objects, such that the effect
is consistent with measurements. The process of applying the texture of an existing
object (physical or virtual) to a different, virtual object is often referred to as texture
transfer [8]. A complete understanding of the scientific theory underlying an ageing phe-
nomenon is usually not required. Rather, a physically-oblivious model derives virtual
appearances from organised measurement data. Depending on the specific technique,
some human intervention in addition to measuring may be required, e.g., by classifying
weathered and non-weathered areas in the source image for consumption by the algo-
rithm. Measurement data of a sample object must be available in at least one point
in time. Typical measurement data types include, depending on the specific algorithm:
casual photographs [27], 3D scans and spatially varying BRDF data obtained with a
linear light source device from surface samples [26].

2.3.1 Appearance Manifolds
In 2006, Wang et al. proposed an approach based on a data structure that can be created
from sample surfaces measured at one given point in time using a linear light source
device for spatially varying BRDF measurements. Surface samples are organised in an
𝑛-dimensional appearance space. With some user intervention for the identification of
most weathered parts, the BRDF samples are ordered by weathering degree. Techniques
for weathering, de-weathering, texture transfer from one object to the next, and the
creation of timed sequences of textures for a given object and material using appearance
manifolds are presented (see figure 2.4) [26].

Despite being oblivious to underlying physical processes, the results are quite con-
vincing. A notable disadvantage is that it relies on accurate measurements, which re-
quires equipment, time and effort. However, only measurement of one point in time is
required, whereas other measurement-based techniques may require capturing at later
points in time as well.

Xuey et al. present an appearance manifold approach that works with casual pho-
tographs as input and output instead of spatially varying BRDF measurements. Source
images are defined as a product of reflectance and illuminance. By statistical means,
those are statistically decomposed. The authors provide a scheme for transferring weath-
ering between photographs as well as for weathering and de-weathering of photographs
(see figure 2.5) [27].

2.3.2 Context-Aware Textures
Lu et al. present a measurement-based approach to material ageing. Applications to
the simulation of effects due to chemical attacks on metals and biological attacks on
cheeses are presented in the publication. Extensive and costly physical measurements
in multiple weathering states are necessary to capture a new effect. However, once mea-
surement is completed, the results can be re-used in the form of a texture library. The
researchers directly capture the time-varying appearance of objects in a precisely con-

2. Related Work 13

Figure 2.4: Wang et. al. present synthesised appearances of the gargoyle in different
points in time. The time-varying appearance was derived from the surface sample on the
left using the appearance manifold method [26].

Figure 2.5: Xuey et al. demonstrate, based on the source image on the left: de-
weathering, weathering and texture transfer on casual photographs [27].

trolled environment and in regular intervals. The result of measurement, apart from
a reconstructed mesh, is an unlit texture augmented with context parameters obtained
from local shape and environmental factors, thus capturing the geometry-dependent na-
ture of weathering processes. The resulting context-aware texture can then be applied to
the captured model or transferred to other geometry using a patch-based approach, con-
sidering time, geometric and environmental factors of the target model and correlating
it with measurement data (see figure 2.6) [18].

Since the complete weathering progression is physically captured, long-running pro-
cesses are infeasible to capture unless artificially accelerated. For instance, the re-
searchers conducted a measurement where a copper pan would be sprayed with constant
amounts of chemical agents dissolved in one litre of water every twelve hours for eleven
days, successfully covering the pan in patina [18].

Precisely predicting the location where imperfections will form would require micro-
scopic precision in the capture process and would be infeasible for end users to provide
for target models. Instead, measurable parameters on a larger scale, which have an influ-
ence on the ageing process, the before-mentioned context parameters, are both measured
and their relationship to the observed weathering process analysed. An example of this
interdependence is the property of rust to form faster in areas that are more exposed
to the rusting agent. Among the measured local features are:

• Ambient Occlusion, as a measure of local exposure to the environment,
• Source Direction, the local surface orientation relative to the weathering agent,

2. Related Work 14

(a) (b)

Figure 2.6: Using the context-aware textures approach, (a) shows measurement data
that has been transferred to the output model (b). Note the large geometric differences
between the flat plate and the seahorse model [18].

optionally taking shadowing effects into account,
• Signed Mean Curvature is positive on convex and negative on concave local neigh-

bourhoods,
• Principal Directions are the directions towards minimal and maximal curvature

at a given vertex [18].
As pointed out by the authors, results using this approach can be quite effectively
validated by applying a synthesised texture back to captured geometry. The synthesized
version can then be compared to the measurement data of the real weathered object.
The researchers results were similar, though not identical [18]. Judging by the quite
convincing renderings provided with the paper, the approach has been astoundingly
successful.

2.4 Phenomenological Models
Where physically-based simulations aim for realism, it instead suffices for a phenomeno-
logical model to produce results that are convincing. A detailed model of the physical
nature of the underlying effect is intentionally not provided. This typically leads to less
complex models that are applicable to a wider range of effects compared to physically-
based approaches. Alternative names for this class of technique sometimes used in the
field are “physically-oblivious” [2] or simply “faking”. The aforementioned transfer tech-
niques in section 2.3 can be seen as a special case of phenomenological models that use
some form of physical measurement as configuration data. Since the physical processes
that are the cause of weathering effects are often inter-dependent, not fully understood
or too complex to simulate [4], the field saw the emergence of several techniques that
are oblivious to the underlying cause and instead apply phenomenological models not
derived from domain knowledge. These models often achieve quite convincing approxi-
mations.

2. Related Work 15

Figure 2.7: Diagram of the texture-space algorithm by Bellini et al., note how artefacts
gradually appear instead of blending in [2].

2.4.1 Weathering in Texture Space
In 2016, Bellini et al. proposed a weathering simulation technique generating time-
varying texture variants working with only a weathered texture as input, not requiring
user input and oblivious to the underlying physical process. The algorithm estimates an
age map containing the degree of weathering of individual texels of the input texture
based on the assumption that weathered regions are less likely to be repeated than
unweathered regions. A past age map can be interpolated with a threshold-based tech-
nique where values above the threshold are reduced, while values below are discarded.
Conversely, the age map can be extrapolated for future points in time by scaling of texel
weathering degrees. The researchers further propose a technique to synthesize an intact
texture with apparent signs of weathering removed. Input and intact texture can now be
blended with the interpolated age map as a guide to obtain a convincing time sequence
with artefacts gradually appearing and small artefacts only starting to appear later on
in the time sequence. With a technique similar to the creation of the intact texture,
textures can be synthesized for either a painted age map or a future extrapolated age
map, yielding potential future states of weathering (see figure 2.7) [2].

A particular advantage of the approach is that weathering effects can be directly
learnt from provided input textures and, in contrast to similar approaches, such as
Appearance Manifolds [26], no human intervention is necessary for the weathering degree
estimation [2]. A notable disadvantage of the technique is that the geometry of the
weathered object, as well as the geometry of other objects in the scene, is not taken into
account during weathering, since the algorithm works exclusively in texture space.

2.4.2 𝛾-ton Tracing
Weathering-driving and sometimes weathering-resisting factors are modelled with an
ageing-inducing particle denoted 𝛾-ton. These are shot from sources in multiple itera-
tions and get traced through the scene (see figure 2.8) while exchanging material with
a point-based scene representation. The final concentration of materials in the point
cloud is then used to drive the actual weathering effect [4]. The paper recommends
multi-texturing and texture synthesis to perform the actual weathering effect on the
scene in a second pass using the information in the point-based representation. Applica-
tion examples for all major attack classes by means of using 𝛾-ton transport information

2. Related Work 16

Figure 2.8: A diagram from the original 𝛾-ton publication, outlining how gammatons
are shot from a hemispherical environment source on a straight line and traced through
the scene in one of three motion states, interacting with geometry [4].

Figure 2.9: Rendering of a weathered object using linear blending of two textures guided
by the gammaton map in the top right [4].

for either vertex displacement or for texture blending are provided in the paper (see fig-
ure 2.9) [4]. As pointed out in [9], only small geometry changes can be modelled in
addition to shading changes, since no model for the representation of the object interior
is provided.

Advantages of the approach are the wide range of weathering phenomena that can
be modelled with the technique and that results take the whole scene geometry into
account. This enables support for global transport effects, also referred to as stain bleeding
(see figure 2.1), giving blemishes the ability to spread from one object to the next [4].

To describe the behaviours of different types of weathering-inducing materials and
their sources, many parameters can be configured, including: 𝛾-ton source positions,
shapes and emission counts, initial surfel and gammaton attributes, flow distances of
𝛾-tons, transport rules for surfels and 𝛾-tons [4]. Being a purely phenomenological ap-
proach, these parameters have no direct equivalent in the real world, making meaningful
configuration rather difficult. Finding the right parameters mostly requires some exper-
imentation.

No detailed strategy is provided on when or how to perform appearance rendering
using a 𝛾-ton map in combination with the suggested techniques of texture synthesis
and multi-texturing. In raytracing, the 𝛾-ton map could be used in its spatially organ-
ised form during rendering to synthesize material composition for a given point in a

2. Related Work 17

similar way that a photon map would be consulted for indirect illumination. Another
possibility would be to synthesize standard texture maps for rendering ahead of time
(albedo, metallicity, reflectivity, etc.). In scenarios where simulation is performed on-line
and material concentration should thus change over the course of the program, the ma-
terial concentration texture could also be used as an input for surface shader programs
that then perform weathering on a per-fragment basis. All texture-based approaches,
however, would rely on entities in the scene having non-repeating UV coordinates, so
each texel of a particular object could be uniquely mapped to a world position. If this
is not already the case, either a new set of UV coordinates could be generated for the
scene, or material concentration could be saved as the property of vertices in model
formats that support custom attributes.

The algorithm shares similarities with classical photon tracing as proposed by Jensen
in 1995 [13] but applies them to the fundamentally different domain of weathering [4]. A
similar system of dissolved materials in particles being exchanged with surfaces is also
present in the flow system by Dorsey (see section 2.2.2), though that system includes
more domain-specific knowledge on fluid behaviour and uses textures instead of kD-trees
as the primary data structure for surface properties. The stain bleeding feature of 𝛾-ton
tracing has its equivalent in the differential flow of the Dorsey system [7].

Several extensions to the algorithm have been proposed. Jiao and others propose a
technique for realistic weathering of fur in the context of raytracing using 𝛾-ton tracing,
extending the approach with a physically-based dust accumulation model [14].

João Montenegro Almeida presents a specialized version of the tracing algorithm
for large scenes in his Masters Thesis and proposes a workflow for texture-based ap-
pearance rendering tailored to the presented tracing method. Instead of sampling the
scene into surfels, it is rendered from the viewpoint of multiple cameras, each rendering
a depth map and a normal map. The tracing process is then performed on the implicit
representation of the geometry provided by the set of depth and normal maps instead of
the original mesh. An output camera is used to synthesize an output dirt texture from
the point of view of this camera. For best results, the output camera should be identical
to the camera later used for rendering [1]. The precision is limited in comparison to the
original algorithm and the algorithm only solves the problem for one viewing angle, but
can provide approximations for scenes that would otherwise be too large for weathering
simulation.

Jiayin and Mingquan propose an improved tracing method using height field pro-
file tracing. Instead of retiling the mesh for displacement, as was done in the original
implementation, the tracing process is adapted to a two-reference surface height field
[15].

2.4.3 𝜇-ton Simulation
Joseph T. Kider presents the 𝜇-ton system in his PhD thesis, comparing it to 𝛾-ton
tracing. Both systems have conceptual similarities with photon tracing [16].

𝜇-tons describe the scene in a point-based representation. They come in three main
flavours: emitter, decay and material. Further, they may mutate from one type into the
other. All three share a common base interface. New decay effects interact with the
system through this base interface and can be derived from existing effects [16].

2. Related Work 18

Emitter 𝜇-tons can be located in empty space, inside objects or on the surfaces of
objects and encode emission attributes, such as the emitted particle count, their type
and the emission shape. During the emission process, emitters divide their energies
among emitted child 𝜇-tons, which are then propagated through the scene. This makes
emitter energy roughly proportional to the emission count. However, energy may be
added or removed to the emitter 𝜇-ton over the course of the simulation. Further, this
type of ton defines a time, which controls the emission frequency of different sources.
Emitters can not only be placed by artists but also be created as a result of a 𝜇-ton
intersection. This powerful features enables the modelling of multi-layer and complex
interactions [16].

Decay 𝜇-tons capture the behaviour of a specific decay process such as mould growth
and propagate through the scene, inducing material changes. They describe the type
of decay and decay-specific attributes as well as sphere of influence size, positional
and motion information. The 𝜇-ton propagation process differs from the generalised,
probabilistic 𝛾-ton propagation in that the details of motion are specialised over the type
of decay and tailored to scene and material structure. For instance, fluids use a smooth
particle hydrodynamic, whereas mould growth 𝜇-ton motion is governed by reaction-
diffusion equations. The four motion states of 𝛾-ton tracing can also be incorporated
for “randomness”. Collisions can lead to absorption of the decay 𝜇-ton, diffusion into
the geometry or reflection [16].

Material 𝜇-tons represent surfaces and their attributes in a similar way as surfels in
the 𝛾-ton system and come in the form of texture and geometry 𝜇-tons. While geometry
𝜇-tons are placed on the surface with a 3D constrained Voronoi Cell method and quite
similar to surfels, texture 𝜇-tons define position with respect to a texture that is mapped
to the object. Texture 𝜇-tons are better suited for the efficient representation of thin
layers of materials. The initial amount of material 𝜇-tons is often low, since new 𝜇-tons
can be added in response to an intersection. Certain material 𝜇-tons have constraints,
which connect them in a force-based lattice system. The strength of the forces is de-
pendent on the material and influences the likeliness of breakage. The lattice system
represents the underlying mesh and allows for modification of the mesh by modification
of forces by reaction equations to capture some physical and chemical decay effects.
Based on the forces, parts of objects may mutate, collapse or break off. Movement of
severed parts is facilitated with a rigid body system [16].

𝜇-tons are collected into time-varying distribution maps. Those can be in the form
of point clouds of 𝜇-tons or in the form of textures with white representing maximum
point density and black indicating no 𝜇-tons. The maps are used to guide the formation
of decay effects. Some decay processes also use lighting information in addition to the
distribution maps. In particular, ambient occlusion and normal maps may be of interest
for many effects, since they provide means of recognising surface features such as corners,
cracks or top faces. In addition to guiding effects, distribution maps also influence the
propagation process itself and are used to facilitate interdependent phenomena. An
example of such interdependence would be fungal colonies using up nutrients in a fruit
[16].

Mutations due to 𝜇-tons can not only affect shading properties, but also geometry.
The mesh mutation approach uses the Voronoi lattice system with an accompanying
Delaunay representation of its center points and ensures higher tessellation in regions

2. Related Work 19

Figure 2.10: Manually shot 𝛾-tons visibly flow over a surface and interact with it [12].

where more decay 𝜇-tons have interacted with material 𝜇-tons [16].
Effects that can be captured with 𝛾-ton tracing can be modelled in the 𝜇-ton system

as well and the systems have large conceptual similarities. Conversely, the 𝜇-ton provides
unique features that enable a wider range of ageing effects to be modelled. As pointed out
by Kider, a key difference is that ageing effects exhibit “local growth and are not merely
transported around” [16]. For instance, 𝜇-tons have the ability to mutate into different
types, to diffuse inside geometry and allow for sources to be contained inside geometry.
This readily captures the behaviour of organic growth. The geometry representation also
exhibits larger differences between the two approaches. While geometry changes in 𝛾-
ton tracing rely on displacement maps over retiled high-res meshes, the 𝜇-ton geometry
system constantly performs custom triangulation during simulation to better capture
splitting effects, crumbling and wrinkling.

2.4.4 Interactive 𝛾-ton Tracing
A technique for accelerated tracing of ageing-inducing particles has been published in
2012 by Günther, Rohmer and Grosch with the main goal of providing a fast ageing
simulation with which artists can directly interact. According to the authors, this is the
first interactive GPU-accelerated method for material ageing to be published. In contrast
to classical 𝛾-ton tracing, which the proposed algorithm is based on, the simulation
works at interactive frame rates and the tracing of particles can be directly observed
and controlled by the user (see figure 2.10).

Properties of simulation, particles and surfaces can even be changed while the sim-
ulation is running and allow artists to precisely control changes in weathering sources
over the course of the simulation. Instead of a point sample representation, the authors
chose to maintain surface state in a set of textures they refer to as a material atlas, pro-
viding fast lookups for surface properties and less friction when re-using the resulting
textures in external applications. Apart from surface data representation, the approach
differs in other details. Notably, it avails russian roulette to determine motion state in
favour of a velocity-based scheme in time steps. 𝛾-tons do not settle but are either alive
or become immediately available for emission again if they leave the scene or have near-

2. Related Work 20

zero speed. 𝛾-tons in mid-air or just reflected off a surface are considered live [12] and
constantly moving, based on their current velocity. The velocity gets reassigned when
the path intersects geometry and is influenced by friction. On surface contact, substance
is exchanged.

The material atlas also maintains a texel-to-world-scale texture to compensate for
distortion and non-uniform scales introduced with texture mapping. Artefacts at texture
discontinuities depend on the splat size used for texture painting. If it is larger than
one texel in the texture map, artefacts can occur. Normalization of the splat size to
one texel in the atlas is shown to produce no visual seams [12]. In a short paper,
Frerichs, Vidler and Gatzidis take note of the problem regarding splat size described by
Günther et. al and propose a scheme for larger splat sizes. A square is projected onto
the geometry with its center point aligned with the intersection point. Any intersections
with texture discontinuities are handled by splitting the square into smaller polygons at
the discontinuities, assigning two different positions in UV space to the two new edges.
The deposition process is then carried out in a compute shader, optionally using a mask
texture to support other deposition shapes [10].

Substance Painter1 is a commercial product for texture painting that employs par-
ticle systems to paint directly onto textures or onto textures mapped to 3D objects.
The implementation has similar capabilities as the GPU-particles implementation by
Günther et al. but aims primarily at painting individual objects instead of weathering
full scenes with inter-object substance transport.

1https://www.allegorithmic.com/products/substance-painter

https://www.allegorithmic.com/products/substance-painter

Chapter 3

Implementation

This chapter provides a detailed description of the implementation. A variation of the
𝛾-ton tracing approach, described in section 2.4.2, will be developed.

3.1 Overview
The algorithm calculates time-varying appearances of scenes that are subject to weath-
ering sources, such as sunlight, humidity and air. The algorithm is iterative, yielding
consecutive states of weathering over longer periods of time. As mentioned in the in-
troduction, the main goal of the implementation is to devise a variation of the 𝛾-ton
tracing algorithm for the visual simulation of ageing effects in a texture-based work-
flow. Specifically, the approach should integrate well with typical 3D asset production
workflows.

The term classical 𝛾-ton tracing will be used to explicitly refer to the originally
proposed version published in 2005, as described in section 2.4.2 of the previous chapter.
By contrast, the presented variation will be referred to either as the aitios variation,
after the name of the reference implementation, or simply as the implementation in
unambiguous situations.

aitios is primarily based on classical 𝛾-ton tracing. However, it is not a strict superset
of it and deviations from classical 𝛾-ton tracing will be pointed out and justified. The
implementation further incorporates ideas from the GPU-based 𝛾-ton tracing variation
by Günther et al. as described in section 2.4.4 for the tracing of 𝛾-tons in flow.

The core idea of all 𝛾-ton tracing variations that have been mentioned is to attribute
the weathering degree of entities to the distribution of simulation-defined weathering-
inducing substances [4, 12]. These substances occur in surface point samples, denoted
surfels and in moving particles, denoted 𝛾-tons. The behaviour of 𝛾-tons, surfels and
their interactions with each other model changes in the substance distribution over
longer periods of time. The distribution of substances over surfels in one instant in time,
denoted 𝛾-ton map, implies a state of weathering. Using this distribution information,
a weathered appearance is generated with texture synthesis techniques [4]. Note that
this publication uses the term material exclusively to refer to a named set of attributes
associated with an entity which define its appearance1 when rendered or serialized, while

1Classical 𝛾-ton tracing uses a different taxonomy where material properties describe attributes of

21

3. Implementation 22

substance describes the amount of one of 𝑛 substances associated with a surfel.
𝛾-tons originate from 𝛾-ton sources, such as the sky, which could emit humidity par-

ticles to model rainfall, or streets, which could emit exhaust particles to model urban
pollution. Being traced through the scene, the particles model the transport of sub-
stances, such as humidity, dirt or spores. The tracing leads to exchange of substances
between 𝛾-tons and surfels in a process denoted substance transport2. After each itera-
tion, the substance distribution information over these surfels is utilised for appearance
rendering, where weathered materials are synthesised with frame-to-frame consistency.

3.2 Requirements
The implementation should support most features of classical 𝛾-ton tracing in a variation
that is optimized for a texture-based production workflow.

Practical Applicability: The resulting variation should be applicable in practice. This
applicability requires resulting textures and scenes to produce convincing results for two
reference effects: rusting corrosion and patination. Efficiency of the approach should not
be a major obstacle to its use in practise. The extent to which the implementation lives
up to these requirements will be evaluated in chapter 4.

Completeness: A secondary aim of the implementation is to propose working solutions
for aspects of the classical 𝛾-ton tracing algorithm that are not specified in detail by the
original publication. The description of the presented variation in this thesis strives to
attain completeness, up to the point that it can be re-implemented in a consistent way.
Aspects that will receive additional clarification here is the precise behaviour of 𝛾-tons
in parabolic and flow-like motion, as well as the mode for selection of surfel positions.

Texture Support: Distributions of substances in 𝛾-ton tracing are represented with a
point-based data structure, just as in the original implementation [4]. Such points with
associated properties, denoted surfels, have also been proposed as a rendering primi-
tive by Pfister et al. [24]. However, modern computer graphics, specifically in gaming
contexts, typically work on textured polygonal meshes as rendering primitives. Texture
synthesis based on 𝛾-ton maps is mentioned in classical 𝛾-ton tracing, with some ex-
amples as well as suggestions for additional techniques to use, such as multi-texturing.
They present renderings where the point-based 𝛾-ton map guides the blending between
two textures to capture weathering effects. Little details are provided as to how this
process works [4]. Instead, the original paper concentrates on the core functionality of
calculating the distribution of substances in surfels. This thesis, by contrast, explicitly
describes an approach to map the substance information contained in the surfels into
texture space. These texture maps can be used by subsequent texture synthesis steps
to obtain a final weathered appearance. For these subsequent steps, an effect pipeline
grounded on a layering-based synthesis approach is presented. A progression of partly

surfels that hold amounts of a specific substance. 𝛾-tons hold carrier attributes instead [4].
2Classical 𝛾-ton tracing uses the term 𝛾-transport to describe the same concept [4].

3. Implementation 23

Deserialisation,
Scene preparation

𝛾-ton propagation,
Substance transport

Texture Synthesis

Serialisation

Figure 3.1: A high-level diagram of control flow in the implementation.

transparent blemish textures is applied on top of a base material, guided by the sub-
stance distribution, to generate weathered materials. As an alternative to the built-in
effect pipeline, the substance textures can directly be exported, and appearance render-
ing be left to the application used for rendering.

3.3 Architecture
Figure 3.1 provides a high-level diagram of control flow in the implementation. In
essence, scenery is first deserialised from files and organised in optimised data struc-
tures for surface and geometry. Next, a user-specified amount of simulation iterations
is run, which first update the surface according to the substance transport performed
by propagated 𝛾-tons, then update the materials of entities with synthesised textures
based on the updated surface, and finally serialise the results back to disk.

Result of the implementation is a library aitios, that serves as a reference imple-
mentation for the presented variation. It can be included into target applications where
procedural weathering of scenery is desired. If adding aitios as a dependency in the tar-
get application is not desired, off-line generation of weathering effects is possible with
an accompanying command line tool. It allows for the data-driven running of simu-
lations described in simulation specification fragments. These are YAML markup files
with partial simulation descriptions that can be combined to form a complete simulation
specification. Results of individual iterations are serialized into textures, material files
and scenes.

3.3.1 Organisation
Internally, the aitios project is split up into three layers:

3. Implementation 24

• geometry,
• simulation,
• application.

Geometry: The geometry layer implements lower-level functionality for geometric prim-
itives, meshes, materials, spatial data structures and sampling strategies.

Simulation: The simulation layer depends on the geometry layer to build core weath-
ering functionality. Point-based surfaces, texture synthesis, and the core 𝛾-ton tracing
algorithm are implemented here as independent, though relatively tightly coupled com-
ponents. The core simulation component traces and propagates 𝛾-tons through scenes
to perform substance transport on a surface model. Texture synthesis takes geometry
with an associated surface model to synthesise substance textures. These can be further
processed into weathered textures derived from the substance textures.

Application: Finally, the application layer provides user-level access to the functionality
via simulation specification in YAML files. These can be passed to the command-line
tool implemented in the application layer. Alternatively, the application layer exposes
specification and instantiation functionality, such that custom frontends can be built
that use the same specification format. This feature could be exploited for integration
into 3D modelling and rendering software as well as game engines. Other potential use
cases are graphical applications with procedural geometry to be weathered at runtime.
The application layer is optional and a host application can directly call into the sim-
ulation layer instead. This may be useful if specification functionality is not needed, or
if aspects of simulation are intended to be replaced with a custom technique.

3.4 Surface Model
To assign spatially varying material and weathering properties to surfaces of entities,
the scene is discretised into a point-based representation. Individual point samples are
𝑛-tuples referred to as surfels. To facilitate performant queries for points near a given
position, the set of surfels is organised in a kD-tree. Use of this data structure has also
been suggested in [4]. Each surfel lies on the surface of a triangle in the scene and defines
a number of associated properties:

• �⃗�, the position of the surfel on a surface in the scene,
• Δ𝑠, Δ𝑝, Δ𝑓 , reflectance properties with higher values indicating a rougher surface

that traps more 𝛾-tons (see section 3.6),
• 𝑠0, 𝑠1, . . . , 𝑠𝑛, the amount of each weathering-inducing substance currently at the

surface point,
• 𝑎0, 𝑎1, . . . , 𝑎𝑛, substance-specific maximum fraction of absorbed material from 𝛾-

tons settling near the surface position.
At the end of an iteration, the amount of substances in surfels may be used to synthesize
a new material using the techniques described in section 3.8.

3. Implementation 25

3.4.1 Surface Sampling
Classical 𝛾-ton tracing does not explicitly propose an algorithm for selecting surfel
positions in their 𝛾-ton tracing publication. However, when introducing the concept of
a surfel, the authors cite the work of Pfister et al. on surfels as rendering primitives
[4]. Pfister proposes a scheme where the scene would be scanned with rays from three
orthographic views. The surfels would be placed on intersections of the rays with front-
and backsides of triangles [24]. Multiple surface sampling approaches have been tested
in the development of aitios.

Barycentric

Let 𝑇 be any triangle defined with three vertices, i.e.,

𝑇 =
(︀
�⃗�0 �⃗�1 �⃗�2

)︀T
. (3.1)

Osada et al. propose a technique for uniform sampling of such a triangle in an aspect of
their work on shape signatures. It can be uniformly sampled with a weighted sum of its
vertices. Osada et al. use two uniformly distributed random numbers 𝑢 and 𝑣 in range
[0, 1) to obtain

bary(𝑢, 𝑣) =
(︀
1−
√

𝑢,
√

𝑢 · (1− 𝑣),
√

𝑢
)︀T

, (3.2)

yielding the scalar weights [23, p. 814]. These can be applied to the triangle in the form

�⃗�(𝑢, 𝑣) =
2∑︁

𝑖=0
�⃗�𝑖 · bary(𝑢, 𝑣)𝑖, (3.3)

with the resulting point �⃗� being uniformly distributed on 𝑇 .
Now, for each triangle in the scene, 𝑛 surface points are sampled, where the sample

count 𝑛 is directly proportional to its area 𝐴 and inversely proportional to a user-
defined sample density per square unit of surface area 𝜌, rounding up to guarantee a
whole number and at least one surfel per triangle. 𝑛 is evaluated as

𝑛 =
⌈︂

𝐴

𝜌

⌉︂
. (3.4)

The area-weighted per-triangle sampling approach is efficient in terms of both time and
space complexity. It is a pleasingly parallel problem, where each triangle can be sam-
pled independently. However, the points show a tendency to clump together on smaller
scales (see figure 3.2 (b)), leading to statistical bias. This could cause observable arte-
facts in substance distribution. For instance, given an interaction location and radius,
the amount of interacting surfels could vary by a non-trivial amount. Since substances
carried by 𝛾-tons are split among interacting surfels in interaction, this made some ar-
eas more susceptible to weathering than others, depending on local surfel density. In
some cases, the amount of interacting surfels could be zero, in which case the surface is
assumed under-sampled, and the interaction process falls back to interacting with the
nearest surfel only. For texture synthesis, the technique leads to similar biases when
associating texels with surfels, causing artefacts. Note that the ceiling of 𝑛 also adds
some statistical bias. It became clear that an even spacing of points would be desirable

3. Implementation 26

(a) (b)

(c) (d)

Figure 3.2: Two surfel distributions in Blender (a) and (c) with a blowup of the bottom
left corner depicted in (b) and (d). The top row is obtained with area weighted triangle
sampling, while the bottom row utilises Poisson Disk sampling by dart throwing on sur-
faces. Both seem quite uniformly distributed at first glance, especially on larger scales.
Note, however, that surfels in the bottom row have no tendency to clump together or
form holes due to their minimum distance requirement. These properties make results in
substance transport and texture synthesis more predictable.

to minimise statistical bias, warranting the use of a new approach. While the initial ap-
proach is relatively fast, it provides no guarantees on how surfel positions are distributed
on the face of a single triangle.

Dart Throwing

To add additional guarantees and accomplish the goal of low statistical bias, the Dart
Throwing algorithm by Cline [5] was implemented as the final solution to the problem. It
generates a maximal Poisson Disk set on surfaces made from fragments that can be split,
including an optimised version for triangle meshes. Any Poisson Disk set guarantees a
minimum distance 2𝑟 between contained points. Maximal Poisson Disk sets additionally
guarantee that no further points can be added without violating the minimum distance
constraint. The resulting point spacing (see figure 3.2) was satisfactory for the purposes
of the implementation and lead to predictable results.

In the case of triangle meshes, the Dart Throwing algorithm first forms an active

3. Implementation 27

list of triangles. To generate a new point, it selects and removes a triangle weighted by
area from the active list and tries to add a uniformly sampled point on its surface to the
Poisson Disk set, unless the new point would violate the minimum distance constraint
with respect to the already generated points in the set. Regardless of whether a point
was added or not, it is checked if the selected triangle is completely covered by the point
set. If covered, no new triangles are added to the active list and the next point can be
generated. If not yet covered, the triangle is split at edge midpoints and the subset of
sub-triangles not covered by the point set is added back to the active list. This process
is repeated until no triangles are left in the active list, yielding a maximum poisson disk
set [5].

An optimisation scheme for the active list as proposed by Cline et al. is deployed.
The active list is organised in logarithmic bins, in which triangles can be sampled, on
average, in constant time [5]. The first bin contains the largest triangle in the input mesh
with area 𝐴max and all triangles with more than half the area of the largest triangle.
The bounds are halved for the next bin [5]. Generally, the bin with index 𝑛 ∈ N holds
triangles with 𝐴 in the interval[︁

2−𝑛 ·𝐴max, 2−𝑛−1 ·𝐴max

)︁
. (3.5)

First, a bin is selected with a probability proportional to the combined area of the
contained triangles [5]. In the implementation, this is done in a way similar to Russian
Roulette in motion probability selection. Let 𝐴0, . . . , 𝐴𝑛 be the combined areas of trian-
gles in the bin with index 𝑛. To sample a bin, a uniformly distributed random number
𝑟−1 in the range [︁

0,

𝑛∑︁
𝑖=0

𝐴𝑖

)︁
(3.6)

is selected and seeds a sequence defined for each bin index 𝑛 ≥ 0 as

𝑟𝑛 = 𝑟𝑛−1 −𝐴𝑛. (3.7)

The bin with the lowest index 𝑛, for which 𝑟𝑛 is negative, will be selected. Then, from
within the bin 𝑛, triangles are selected with rejection sampling. That is, random triangles
are selected from the bin, until one is accepted, according to an acceptance probability.
This probability is defined by the area of the triangle in question, divided by the upper
area bound of the bin. Consequently, the acceptance probability is in range [0.5, 1)
and the rejection sampling will terminate after few attempts in the average case [5].
The improved statistical properties of the Poisson disk sampling approach made results
during tracing and transport more predictable and seemed to also improve the visual
results in texture synthesis.

The first implemented versions of this technique suffered from numerical stability
issues, especially on large sets of triangles. To alleviate these problems, per-bin triangle
areas and the sum of per-bin triangle areas are both approximated as integer multiples
of a common floating point area quantum in aitios. The quantum is chosen as the area
of the smallest triangle, scaled by a constant factor. This allows bin areas as well as
their sum to be cached and continuously updated as triangles are added or removed,
without floating point error accumulating and having the actual and cached area drift
apart.

3. Implementation 28

Textures as Surface Model

A potential alternative to surfels altogether is present in the GPU-based Günther et
al. approach, where surfels are ditched entirely in favour of textures for storage of local
surface attributes. Special handling is required to account for texture discontinuities
(UV seams) and for non-uniform texel-to-world scales over the texture [12]. The flow
simulation model by Dorsey also uses textures as the primary data structure to store
sediments on geometry as well as for export of blemishes [7].

3.5 Particle Model
A 𝛾-ton is a particle for transport of weathering-inducing or de-weathering substances
in a simulation scene. As with classical 𝛾-ton tracing, trajectories start at a 𝛾-ton source
with an initial motion state of straight line movement [4]. After each intersection with
geometry, material gets transported between the ton and nearby surfels, motion state
probabilities will be deteriorated, and a new motion state will be probabilistically se-
lected until the 𝛾-ton either settles on a surface or leaves the scene bounds. A 𝛾-ton can
be defined by the following properties:

• 𝑚, the current mode of travel: either straight, parabolic, flow-like, or settled,
• �⃗�, the current position of the particle,
• �⃗�, current direction of travel,
• 𝑝𝑠, 𝑝𝑝, 𝑝𝑓 , the current motion probabilities for entering each mode of travel after

a surface interaction (see section 3.6),
• 𝑟, a radius within which the particle can interact with surfels (see section 3.7).
• 𝑐0, 𝑐1, . . . , 𝑐𝑛, the concentration of each weathering-inducing substance currently

held by the particle,
• 𝑘0, 𝑘1, . . . , 𝑘𝑛, the rate of absorption from surfels within 𝑟 for each substance.

For the motion probabilities, it is required that

𝑝𝑠 + 𝑝𝑝 + 𝑝𝑓 ≤ 1, (3.8)

such that the probability of settling can be implicitly represented with

1− 𝑝𝑠 − 𝑝𝑝 − 𝑝𝑓 , (3.9)

as in classical 𝛾-ton tracing [4].

3.6 Tracing
The tracing process calculates the subsequent interaction locations of a 𝛾-ton with scene
geometry. A 𝛾-ton will eventually be removed from the simulation when it either settles
or leaves the bounds of the scene. Note that the intersection testing during tracing is
carried out directly on the triangulated scene, independent of surfels. On each point
of contact with scene geometry, a 𝛾-ton interacts with nearby surfels in a process laid
out in detail in section 3.7. This will transport material between ton and surfels and
change the probabilities of motion of the 𝛾-ton according to reflectance properties of

3. Implementation 29

the surfels. This motion deterioration process plays a vital role in the tracing process,
ensuring that the tracing of a 𝛾-ton will eventually terminate.

3.6.1 State Transitions

Akin to classical 𝛾-ton tracing, a new motion state 𝑚′ will be selected after each surface
contact, the initial state always being set to 𝑚 = straight. The new state is selected
according to the updated motion probabilities 𝑝𝑠, 𝑝𝑝, 𝑝𝑓 associated with the 𝛾-ton using a
Russian Roulette technique [4]. Given a uniformly distributed random variable 𝜉 ∈ [0, 1)
the transition can be described as

𝑚′ (𝜉) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
straight for 𝜉 ∈ [0, 𝑝𝑠),
parabolic for 𝜉 ∈

[︀
𝑝𝑠, 𝑝𝑠 + 𝑝𝑝

)︀
,

flow for 𝜉 ∈
[︀
𝑝𝑠 + 𝑝𝑝, 𝑝𝑠 + 𝑝𝑝 + 𝑝𝑓

)︀
,

settle for 𝜉 ∈
[︀
𝑝𝑠 + 𝑝𝑝 + 𝑝𝑓 , 1

)︀
.

(3.10)

3.6.2 Intersection Tests
During tracing, non-settled 𝛾-tons are subsequently moved from one intersection point
to the next, as long as they stay within the scene bounds. All three active motion states
rely on ray-triangle intersection tests performed with the Möller-Trumbore intersec-
tion algorithm [22], accelerated by spatial partitioning of scene triangles in an Octree.
Outgoing directions of motion are generally selected uniformly from the surface of a
hemisphere with 𝑟 = 1 and its base aligned with the surface of the interacting trian-
gle. This process represents a form of diffuse sampling, frequently used in ray tracing
contexts.

Straight

If 𝑚 = straight, the particle motion can be described as a ray. For newly emitted 𝛾-tons,
the ray origin is uniformly selected from a triangle of the emission shape, with diffuse
sampling on the triangle surface selecting an outgoing direction for the ray. Depending
on user configuration, the initial direction can also coincide with the geometric normal
of the triangle at the emission point (see figure 3.3). The scheme for efficiently selecting
triangles weighted by surface area from emission shapes is akin to the logarithmic bin-
ning approach used in surfel generation. In the second instance of straight tracing, when
an already emitted 𝛾-ton is deflected from an interaction point, this point is used as the
ray origin. The triangle on which the intersection point is contained further defines a
space for diffuse sampling of the outgoing direction.

Parabolic

For 𝑚 = parabolic, the particle will enter a parabolic trajectory starting at the inter-
section point 𝑠0. In classical 𝛾-ton tracing, the “trajectory is piecewise linearly approx-
imated” [4]. For the proposed implementation, a rather simple linear approximation
scheme has been devised: The starting direction will be sampled over the upper hemi-
sphere of the selected triangle akin to the straight tracing scheme. This starting direction

3. Implementation 30

Figure 3.3: Straight, initial trajectories of particles (cyan/blue) emitted from a mesh
source.

will be scaled by an indirectly user-specified starting velocity scale 𝑘𝑣, yielding 𝑣0. The
current velocity will be constantly modified by the gravitational acceleration �⃗�, which
can directly be specified by the user. The time-varying velocity can hence be described
as

�⃗�(𝑡) = �⃗� · 𝑡 + 𝑣0. (3.11)

Using an Euler integration scheme, the time-varying velocity modifies the particle po-
sition in fixed time steps, yielding consecutive positions. These positions form perfectly
straight line segments, which can be efficiently intersected with the scene Octree until
the first intersecting line segment is found. With a sufficiently small time step, this
approximates a parabolic trajectory described with

�⃗�(𝑡) = �⃗�

2 · 𝑡
2 + 𝑣0 · 𝑡 + 𝑠0. (3.12)

Letting the user directly select the magnitude of 𝑣0, named 𝑘𝑣, turned out to be
somewhat counter-intuitive, since it is not immediately obvious how far the particle
would travel, or what the resulting parabola height might be, given a 𝑘𝑣 value. Given
the idealised form of the approximated parabola �⃗�(𝑡), a method was derived to specify
the 𝑘𝑣 indirectly by instead specifying ℎ, the height of the resulting parabola, relative
to 𝑠0, in the special case where

− �⃗�

‖�⃗�‖
= 𝑣0
‖𝑣0‖

, (3.13)

that is, the initial direction of motion has the inverse direction as the gravitational
acceleration, which is also the constellation where the parabola has maximum height.

3. Implementation 31

A velocity magnitude 𝑘𝑣 can then be calculated for this special case as

𝑘𝑣(�⃗�, ℎ) = ‖𝑣0‖ =
√︀

2 · ‖�⃗�‖ · ℎ. (3.14)

Flow

Finally, 𝑚 = flow describes flow-like motion originating from an interaction location.
Classical 𝛾-ton tracing describes the behaviour of flow as moving in tangential direction
by a small delta and again interacting with near surfels [4].

A naïve interpretation of this rather vague definition would be to scale a randomly
selected direction on the tangential plane of the current triangle by a fixed distance,
yielding a delta in Euclidean space. This definition, however, leaves the behaviour un-
clear in cases where a patch boundary is crossed. Specifically, the particle might end
up in mid-air or inside geometry, depending on local surface curvature. Another prob-
lematic situation occurs when flow follows the surface of an object that is partly stuck
inside another object. In this case, the particle should transition to the outer surface
instead of entering it.

The primary direction of flow is determined by projecting an incoming direction �⃗�
onto the tangential plane of the triangle that the flow event originates from. Geometric
tangent, binormal and normal of the triangle are used to form an orthonormal basis,
that in turn is combined into a matrix 𝑇 that tansforms world-space directions into
tangent space of the triangle. Now, to obtain a normalized flow direction 𝑣𝑡, that is
aligned with the tangential plane of the triangle, �⃗� is transformed into tangent space,
the component in normal direction is dropped, and the result is transformed back into
world space to be normalized again, evaluating

�⃗�𝑡 = 𝑇 −1 ·

⎡⎣⎛⎝1 0 0
0 1 0
0 0 0

⎞⎠ · 𝑇 · �⃗�
⎤⎦ ,

𝑣𝑡 = �⃗�𝑡

‖�⃗�𝑡‖
.

(3.15)

Instead of directly using this idealised flow direction, the actual trajectory describes
a sawtooth-like function over surfaces, described with two adjacent line segments and
one ray, tested for intersection in sequence. The technique is a modified version of the
flow technique employed by Günther et al., that aims to add the ability for 𝛾-tons to
better float around some overhangs and further guarantees that the point of interaction
will be located on the surface of the underlying mesh used for intersection testing [12].
The technique does not require adjacency information for triangles and is reasonably
efficient. It further prevents particles from accidentally entering the interior of objects
when following the surface of other objects, given that the overlapping objects do not
have holes in their meshes. The user configures a flow distance for a perfectly flat patch of
geometry ‖Δ�⃗�‖, as well as a vertical offset 𝜖 with higher values corresponding to a higher
tendency to stay in contact with the surface, while lower values make it easier for the
𝛾-ton to enter secondary flow. According to ‖Δ�⃗�‖ and 𝜖, the actually travelled distance
will be shorter for concave local curvature, but longer for a convex neighbourhood.

Evaluating the target of a flow event, first, the 𝜖 offset in normal direction is added
to 𝑠0, the origin of the flow event. This is described as a line segment with the parameter

3. Implementation 32

𝑡 ∈ [0, 1], equivalent to the GPU variation [12], i.e.,

𝑓0(𝑡) = 𝑠0 + 𝜖 · 𝑡. (3.16)

In some cases, such as for 𝛾-tons in small cavities, this might already result in an
intersection, which is understood by the implementation to be the next interaction
location. Otherwise, 𝑓0(1) marks the origin of a second line segment 𝑓1(𝑡) that ends in
the expected target point for flat geometry at 𝑡 = 1, where 𝑡 ∈ (0, 1], defined as

𝑓1(𝑡) = 𝑓0(1) + 𝑡 ·
√︁

𝜖2 + ‖Δ�⃗�‖2 · 𝑓0(0) + 𝑣𝑡 · ‖Δ�⃗�‖ − 𝑓0(1)
‖𝑓0(0) + 𝑣𝑡 · ‖Δ�⃗�‖ − 𝑓0(1)‖ . (3.17)

If an intersection is detected, it is selected as the next point of interaction. Otherwise,
with any 𝑡 > 0, the flow event continues on a straight trajectory towards the direction
of gravity as

𝑓2(𝑡) = 𝑓1(1) + 𝑡 · �⃗�, (3.18)

simulating the effects of secondary flow. The effects of gravity are usually only considered
when contact with the surface is lost. Nonetheless, the technique quite accurately mimics
the effects of flow, especially on complex models. aitios additionally gives the user
the option to project the direction of gravity instead of �⃗�. This feature leads to more
interesting flow patterns on extremely flat geometry such as walls, while on complex
models, the effect of the change is rather subtle.

A potential alternative would have been a variation of the flow system employed by
Dorsey et al. in their work on flow [7]. Given patch adjacency information, the particle
could travel a pre-configured geodesic distance on the mesh, re-projecting velocity on
the new triangle when crossing an edge, until the exact geodesic distance is travelled.
This potentially leads to more predictable results. Furthermore, it would naturally and
more accurately than the Guenther method capture the real-world effect of bumpy
surfaces slowing down flow, since bumpiness would imply a greater geodesic distance to
be travelled. This alternative technique would require modification to be applicable to
some non-manifold topologies. For instance, a mesh containing a single triangle without
a back side has no defined neighbour for its edges. To account for secondary flow, given
an abrupt change in surface normal, one could use a landing position texture akin to
Dorsey et. al. or transition to a parabolic trajectory.

3.7 Interaction
The original 𝛾-ton tracing publication does not specify with how many surfels a 𝛾-ton
will interact, though the use of the plural “interacting surfels” suggests more than one
interacting surfel. Further, the usage of a kD-tree is recommended, which facilitates fast
queries for both the 𝑛 nearest entries or the entries within a distance around a specified
point [4].

In the implementation, it was decided to select surfels within an interaction radius
𝑟, instead of a fixed number of surfels. The rationale was that the surfel density could be
increased for more detail without also affecting the interaction radius of 𝛾-tons. If the 𝑛
nearest surfels were selected instead, generating more surfels would effectively decrease
the interaction radius implied by 𝑛.

3. Implementation 33

Surfels with normals that differ by more than a critical angle from the normal at the
impact location are rejected for interaction. This avoids glitches on very thin materials
where surfels from the back side could be influenced by impacts on the front side when
only the distance between impact point and surfel is considered.

More formally, given an interaction location 𝑠𝑖, nearby surfels will be selected for
interaction by Euclidean distance. All surfels at a position 𝑠𝑠 with a lower distance than
the interaction radius 𝑟 of the interacting 𝛾-ton will be applicable, except if the surfel
normal 𝑛𝑠 differs in orientation by at least a critical angle Θ from the normal at the
interaction location 𝑛𝑖. For a surfel to be selected for interaction, it must hold true that

‖𝑠𝑠 − 𝑠𝑖‖ < 𝑟 and 𝑛𝑠 · 𝑛𝑖 < cos(Θ). (3.19)

3.7.1 Motion Deterioration
In a first attempt, the probabilities of motion of an interacting, non-settled 𝛾-ton dete-
riorated compatible to the deterioration equations in [4] of the form

𝑝′
𝑠 = max(𝑝𝑠 −Δ𝑠, 0),

𝑝′
𝑝 = max(𝑝𝑝 −Δ𝑝, 0),

𝑝′
𝑓 = max(𝑝𝑓 + 𝑝′

𝑝 −Δ𝑓 , 0).
(3.20)

From the perspective of the author, the rationale behind the special treatment for 𝑝𝑓 is
unclear. One consequence is that any 𝛾-ton that is capable of deflecting more than once,
where 𝑝𝑝 > Δ𝑝, will possibly also enter a transition into flow, even when 𝑝𝑓 has initially
been zero. As a consequence, it is not possible to both move exclusively on parabolic
trajectories, and deflect more than once. Exclusively straight trajectories, on the other
hand, are possible.

The equations also seem to cause unsoundness in the approach with respect to
equation 3.9, requiring the sum of probabilities to be less than or equal to one, while
no matching constraint is defined for reflectance probabilities. As an example for the
unsoundness, consider a gammaton with 𝑝𝑠 = 0, 𝑝𝑝 = 0.8, 𝑝𝑓 = 0.2 interacting with a
surfel that has Δ𝑠 = 1, Δ𝑝 = 0.1, Δ𝑓 = 0.1. In this case, 𝑝′

𝑠 = 0, 𝑝′
𝑝 = 0.6, 𝑝′

𝑓 = 0.7,
which clearly conflicts with equation 3.9. The unsoundness can be resolved by limiting
𝑝𝑓 to a maximum of 1− 𝑝𝑠 − 𝑝𝑝, i.e.,

𝑝′
𝑠 = max(𝑝𝑠 −Δ𝑠, 0),

𝑝′
𝑝 = max(𝑝𝑝 −Δ𝑝, 0),

𝑝′
𝑓 = min(max(𝑝𝑓 + 𝑝′

𝑝 −Δ𝑓 , 0), 1− 𝑝′
𝑠 − 𝑝′

𝑝).
(3.21)

A user unaware of this flow intricacy might falsely attempt to create a 𝛾-ton that
moves only on parabolic trajectories and give it a 𝑝𝑝 = 1, while defining the reflectance
properties of all surfels with Δ𝑝 = 0.2 and Δ𝑓 = 0.0, expecting no flow events at all. If
a 𝛾-ton happens to bounce twice in such a simulation, Δ𝑓 will remain at a value of 1,
making it impossible for the 𝛾-ton to settle. If the 𝛾-ton cannot escape the scene bounds
in flow, the tracing will never terminate. To ensure termination, an upper bound should
be established for the depth of tracing events.

3. Implementation 34

Also note that a 𝛾-ton typically interacts with more than one surfel. Nearby surfels
are expected to have similar reflectance, except on material boundaries, where surfels
built from distinct materials may be mixed. The actual reflectance properties used for
deterioration should be averaged over all interacting surfels, such that these edge cases
are properly handled.

3.7.2 Substance Transport
Absorption and sedimentation are described with linear equations. The equations are
similar to the 𝛾-transport equations proposed in [4], of the form

𝑎← 𝑎 + 𝑏 · 𝑘, (3.22)

but modified to support multiple interacting surfels, negative absorption rates and other
features.

According to the transport equations, 𝛾-tons will interact with surfaces on each
point of contact until settlement. For each substance with index 𝑖, an absorption rate
𝑎𝑖 as well as the amount of dissolved sediment 𝑠𝑖 is defined for the 𝛾-ton. Surfels, on
the other hand, define a local concentration of sediment 𝑐𝑖 and its deposition rate 𝑘𝑖.
To disambiguate the values of all 𝑛 surfels, the index of the surfel is notated as an
additional index, 𝑐𝑖,𝑗 and 𝑘𝑖,𝑗 .

Two transport modes are implemented, namely classic and consistent transport.
The former resembles the transport rules used for the patina example in the original
𝛾-ton publication. If the particle bounces, it will first absorb substance, and once it
settles, it will dispose of some or all of its substance. The latter performs transports
consistently accross surface contacts, including the last surface contact where the 𝛾-ton
settles, running absorption and deposition as competing processes. classic transport
seems to be most useful when a substance prefers cavities, such as moss that colonises
cracks in a floor, while consistent transport seems to provide better results for flow
artefacts and corrosion.

Classic Transport

On each non-settling stop, the 𝛾-ton will absorb sediments from the surface, for each
sediment 𝑖 and an amount of interacting surfels 𝑛 ≥ 1, the absorption process can be
described as

𝑠′
𝑖 = max

(︁
0, 𝑠𝑖 +

𝑛∑︁
𝑗=0

1
𝑛
· 𝑎𝑖 · 𝑐𝑖,𝑗

)︁
. (3.23)

To conserve the amount of material currently in the simulation, the same amount must
be removed from the individual surfels in the form

𝑐′
𝑖,𝑗 = max

(︁
0, 𝑐𝑖,𝑗 −

1
𝑛
· 𝑎𝑖 · 𝑐𝑖,𝑗

)︁
. (3.24)

On these intermediate stops, the surface usually will not receive any substance unless the
𝛾-ton absorption rate is negative. Positive absorption rates lead to increased substance
concentrations in inaccessible areas, such as cracks. Negative absorption rates, on the
other hand, lead to higher concentrations in areas with high accessibility. In any case,

3. Implementation 35

transported substance is guaranteed to be removed from its source 𝛾-ton or surfel, as
to guarantee a constant amount of sediment in the scene during transport.

When a 𝛾-ton finally runs out of motion probability and settles, it will deposit
some or all of the absorbed substance onto 𝑛 nearby surfels. This disposal adheres to a
substance-defined deposition rate associated with each surfel 𝑘𝑖, such that

𝑐′
𝑖,𝑗 = 𝑐𝑖,𝑗 + 1

𝑛
· 𝑘𝑖,𝑗 · 𝑠𝑖. (3.25)

Since the 𝛾-ton is removed from the simulation after settling, its sediments need not
be updated as in the absorption process shown above. A typical value for 𝑘𝑖 is 𝑘𝑖 = 1,
leading to all dissolved substances being deposited at the settlement location. This
makes sense for water drops with dissolved sediments that would be left behind once
the water is fully evaporated. Values lower than one can be used for 𝛾-tons with cleaning
effects, while 𝑘𝑖 > 1 can be used as either an unnatural exaggeration effect or to model
organic growth.

Consistent Transport

In some simulations, the direction of substance exchange should not be determined by
motion state, but instead by the combination of 𝛾-ton and surface material, using the
relative absorption and deposition rates. This differential style of transport is referred
to as consistent transport within the implementation, since the equations themselves
are unchanging with respect to the motion state. The substance transfer occurring from
the 𝛾-ton to 𝑛 ≥ 1 surfels using consistent transport can be described as

𝑐′
𝑖,𝑗 =

{︃
𝑐𝑖,𝑗 +

(︀
𝑘𝑖,𝑗 − 𝑎𝑖

)︀
· 𝑠𝑖 for

(︀
𝑘𝑖,𝑗 − 𝑎𝑖

)︀
≥ 0,

𝑐𝑖,𝑗 +
(︀
𝑘𝑖,𝑗 − 𝑎𝑖

)︀
· 𝑐𝑖,𝑗 for

(︀
𝑘𝑖,𝑗 − 𝑎𝑖

)︀
< 0.

(3.26)

with the substance amount in the 𝛾-ton changing respectively in the form

𝑠′
𝑖 =

{︃
𝑠𝑖 −

∑︀𝑛
𝑗=0

(︀
𝑘𝑖,𝑗 − 𝑎𝑖

)︀
· 𝑠𝑖 for

(︀
𝑘𝑖,𝑗 − 𝑎𝑖

)︀
≥ 0,

𝑠𝑖 −
∑︀𝑛

𝑗=0
(︀
𝑘𝑖,𝑗 − 𝑎𝑖

)︀
· 𝑐𝑖,𝑗 for

(︀
𝑘𝑖,𝑗 − 𝑎𝑖

)︀
< 0.

(3.27)

This mode of transport seems more suitable to generate flow artefacts with 𝛾-tons of
high 𝑝𝑓 , especially for the modelling of corrosion effects. The original intention behind
consistent transport was to provide a means of changing the direction of transport
depending on material.

3.7.3 Ageing Rules
Substance concentrations are not only influenced by the transport process, but also by
static ageing rules that influence surfels independently and irrespective of accessibility,
curvature or other geometric factors. They come in two scopes–simulation-scoped and
material-scoped–as well as in two styles: transfer and deteriorate-rules.

An important use case of material-scoped rules is to model substances that only
occur when another substance is present on a specific material. For instance, increased
humidity induces corrosion on metals, but does not lead to the same reactions if present

3. Implementation 36

on plants, concrete or plastic. Now consider an exterior scene where an iron barrel stands
on top of a concrete floor and both objects are exposed to rainfall. This could be modelled
with one substance for humidity and one additional substance for rust. The objects are
shot with humidity-bearing 𝛾-tons from a source tied to the sky. A material-scoped
ageing rule that is specific to surfels on iron materials would then convert stagnant
water on the barrel to reddish, iron-specific rust, with more water leading to faster rust
accumulation rates. Since the rule is specific to iron, the floor will not rust, even if water
is present. Note that this solution is more powerful than ditching humidity and instead
having rust fall from the sky directly, using different absorption/deposition rates for the
iron and concrete materials. Accurate stain bleeding requires the transfer rule approach:
the water drops can still absorb some of the rust on the barrel and flow onto the floor,
depositing rust on the floor, even though the floor itself is not made of iron and cannot
rust by itself.

In the implementation, this style of inter-substance ageing is denoted a transfer
ageing rule, encoding a simple chemical reaction. It deteriorates the concentration of
one substance 𝑖, adding an equal amount of another substance 𝑗, according to a transfer
rate 𝑘, i.e.,

𝑐′
𝑖 = 𝑐𝑖 − 𝑘 · 𝑐𝑖,

𝑐′
𝑗 = 𝑐𝑗 + 𝑘 · 𝑐𝑖.

(3.28)

Apart from transfer, the gradual reduction of substance concentration over time can
also be modelled with a static ageing rule. The prime use case is the evaporation of
water over time, which the implementation calls a deteriorate ageing rule. Making the
evaporation rule simulation-scoped establishes a global evaporation rate for all mate-
rials, while material-scoped rules could differentiate between concrete and sponges in
evaporation rate. Deterioration can be defined as

𝑐′
𝑖 = (1 + 𝑘) · 𝑐𝑖. (3.29)

Custom ageing rules similar to the just presented types are also present in the chain
example in [4]. More complex static ageing rules are thinkable, which would include
geometric factors such as surfel normal or accessibility. For instance, as pointed out
by Lu et al., sunlight exposure and shadowing influence evaporation rate [18]. Pressure
points on fruit are more susceptible to biological attacks [17]. Such phenomena could
be represented in ageing rules, given geometric context parameters.

3.8 Texture Synthesis
Once a 𝛾-ton tracing iteration is complete, the substance concentration information

stored in surfels can further be used for texture synthesis of weathered materials. Per
entity, the texture synthesis process involves the following steps:

1. Calculate a unique texture for the entity where each texel encodes the mapped
world-space position of the center of the texel on the surface of the entity (see
figure 3.4 (a)).

2. For each texel in the world-space position texture, look up the nearest surfels to
the world-space position and store them in a surfel association texture of the same
dimensions.

3. Implementation 37

(a) (b) (c)

Figure 3.4: Fractional part of position texture, rendered as RGB (a), substance texture
with black pixels indicating maximum substance amount, built from the position texture
and the current substance distribution (b), texture blended on the basis of the substance
texture (c).

3. For all substances in the simulation, look up the amount of substance of each as-
sociated surfel for a texel and calculate a combined and filtered substance amount
which is again stored in a substance map as the basis for the actual synthesis of
the textures used for rendering of the entity (see figure 3.4 (b)).

4. Guide further texture synthesis with the substance map to obtain synthesised
maps for albedo, roughness, metallicity, displacement and normal, according to a
pipeline of layering effects (see figure 3.4 (c)).

Per entity, the core functionality in aitios calculates one substance map for each sub-
stance in the simulation. There are two main ways of utilising these maps for the last
step, obtaining a final weathered appearance.

The first option is to load the resulting substance map into the target environment
(modelling applications, games, etc.) and to perform further processing there to cal-
culate the final weathered appearance. In this approach, substance amount calculation
and appearance rendering are decoupled and carried out in distinct environments, mak-
ing the approach quite flexible. Possible target environments would be node setups in
Blender Cycles, Unreal Engine or Substance Designer or fragment shaders in OpenGL
or Vulkan-based interactive applications. The target environments use the substance
map texture as an input for on-line texture synthesis of the final weathered appearance.

Alternatively, aitios provides built-in texture synthesis methods based on an effect
pipeline of blending-based operations. These augment the original textures in the input
scene with weathered texture samples depending on local substance concentration to

3. Implementation 38

obtain modified texture maps for albedo, metallicity, roughness and other texture maps
typically used for physically-based rendering. The newly obtained texture maps are
exported and a new version of the input scene with modified materials can be exported
after each iteration of the simulation as an OBJ/MTL file pair.

Both the built-in functionality for synthesis of texture maps for physically-based
rendering as well as recommendations for external appearance rendering in Blender are
further described in section 3.8.4 on appearance rendering.

3.8.1 Position Texture
The first step of a texture synthesis pipeline is the calculation of a unique world-space
position texture (see figure 3.4 (a)) for each entity in the simulation. To obtain the
texture for an entity, each of its triangles is first transformed to its equivalent in the
texture coordinate plane. This is done by setting the vertex positions to their associated
positions in UV space, scaled by the size of the output texture, and associating the
original world-space position as an attribute to each vertex. If the resulting triangle has
clockwise winding order with respect to the unit vector in positive 𝑧 direction, the first
two vertices are flipped. The transformed triangles are then rendered into a framebuffer
of texture size with the half-space rasterisation method [20]. For each rasterised pixel,
the world-space position will be obtained with barycentric interpolation of the known
world-space positions on the triangle vertices.

Additionally, island bleed of user-defined width in pixels is added. This feature ex-
trapolates world-space positions near triangles that have no direct neighbour in UV
space, that is, at texture discontinuities. This step avoids bleeding artefacts at UV is-
land margins. Further, it avoids problems with triangles of sub-pixel area in texture
space or with triangles that span multiple pixels but degenerate into line segments in
UV space with no or almost no area.

Given a simulation workload without displacement, a memory-for-speed optimisa-
tion is applied. In such cases, the world-space position texture can be cached after
the first rasterisation and does not need to be recalculated for the remainder of the
simulation.

3.8.2 Surfel Association Texture
The surfel association texture defines a mapping of each texel of the output texture
to a set of associated surfels. This mapping might change from iteration to iteration
if displacement maps are involved. The referenced surfels, in turn, each define a point
sample of local substance amount. Given a world-space position texture of the same
size as the output texture and a kD-tree of surfels, a surfel association texture can be
calculated. For each texel in the corresponding position texture, a number of surfels is
selected depending on user configuration. Either, a fixed number of nearest surfels is
selected, or all surfels within a given distance are. References to the associated surfels
are stored in the texels of the surfel association texture. If the world-space position
texture can be cached, surfel associations can also be cached.

3. Implementation 39

3.8.3 Substance Texture
To estimate a substance amount for a given texel of a surfel association texture, the point
samples of substance amount are averaged over the associated near surfels, optionally
applying a weight factor, resulting in the final substance amount of a texel.

A substance texture can be calculated for each combination of entity and substance
in the simulation. Given a surfel association texture and one type of substance, let 𝑐𝑖

be the concentration of the same substance for surfel 𝑖 of 𝑛 associated with the texel.
The unfiltered texel concentration can be obtained with the arithmetic mean, i.e.,

1
𝑛
·

𝑛∑︁
𝑖=0

𝑐𝑖. (3.30)

To attenuate the influence of 𝛾-tons that are farther away and make concentration
changes less abrupt, the texture can optionally be filtered. For this purpose, consider the
distances between the represented texel center and the actual positions of the associated
surfels as 𝑑𝑖, with a maximum of 𝑑max to obtain a weight 𝑤𝑖, shaped by a constant 𝑘.
The weights are defined as

𝑤𝑖 =
(︂

𝑑max − 𝑑𝑖

𝑑max

)︂𝑘

. (3.31)

The resulting weight is in the range [0, 1], with a higher value indicating higher influence.
The 𝑘 parameter shapes the falloff, e.g., 𝑘 = 0 gives every surfel the same weight and
𝑘 = 1 represents a linear falloff. The weights need to be scaled in the form

𝑤𝑖 = 𝑤𝑖∑︀𝑛
𝑗=0 𝑤𝑗

, (3.32)

such that their sum is one. The scaled weights can then be applied to the surfel concen-
trations to obtain a filtered amount as

𝑛∑︁
𝑖=0

𝑤𝑖 · 𝑐𝑖. (3.33)

3.8.4 Appearance Rendering
In a final step, 𝑛 substance concentration textures of an entity are combined into a set
of texture maps used for rendering. This step is referred to as apperance rendering and
can be performed with the built-in effect pipeline of aitios, or externally, with only the
substance textures synthesized by aitios and further texture synthesis performed in a
different environment.

Effect Pipeline

The weathering model in aitios is based on the understanding that weathering is a
degradation process starting when an object is exposed to environment conditions after
its creation. The originally mostly clean and smooth reference surface only contains
manufacturing-related blemishes. This surface is subject to physical, chemical and bi-
ological attacks as outlined in Attack Classes in section 2.1.1 over the course of the

3. Implementation 40

simulation. The attacks are attributed to the weathering-contributing substances stored
in substance maps. A sequence of effects, denoted an effect pipeline, modifies the base
material textures guided by the substance texture associated with the effect.

Each effect in the pipeline applies a new layer to the base material to simulate the
combination of attacks the base material is subject to. For this, the effect defines an
associated substance type to obtain a substance texture. Also, a progression of blend
stops can be defined for each of albedo, roughness, metallicity, displacement and normal.
Each of these blend stops defines a weathered texture sample and an associated cenith,
which is the substance amount where the sample has maximum influence. Given each
substance amount texel, one or two blend stops can be selected. If the substance amount
𝑐 is lower than the first cenith or higher than the last cenith, the blend layer colour can
be directly sampled from the first, respectively last, blend stop sample. In all other
cases, the blend stop with the highest cenith lower than or equal to the local substance
amount 𝑐0 is selected, along with the blend stop with the next-highest cenith 𝑐1. An
alpha value for interpolation between the blend stops can be calculated as

𝛼 = 𝑐− 𝑐0
𝑐1 − 𝑐0

. (3.34)

A texel at the same UV offset as the substance texture texel is sampled from the
sample texture of each relevant blend stop. The texture samples are usually partly
transparent such that the base material can shine through. Let the sample at the lower
blend stop be a colour 𝑠0 and the sample at the higher blend stop be 𝑠1. For all of albedo,
roughness, metallicity and displacement, an adequate intermediary value 𝑠 between the
blend stops can be obtained with linear blending as

𝑠 = (1− 𝛼) · 𝑠0 + 𝛼 · 𝑠1, (3.35)

and used as a colour in the blending texture. Each effect in the pipeline generates a
blending texture in this way. These blending textures are blended on top of the original
texture of affected objects in the order they were defined. The modified textures are
exported and versions of the scene with weathered materials applied can be exported.

While linear blending provides meaningful results for texture maps that directly
encode a colour or offset, linear blending is not admissible for normal maps, where
instead a direction is encoded. To interpolate between normal blend stops, the colours
are first transformed to tangent-space directions �⃗�0 and �⃗�1, assuming values in the range
[0, 1] for the individual colour channels of 𝑠0 and 𝑠1 and the usual convention of mapping
the colours to the range [−1, 1] with blue values always being greater or equal than 0.5,
such that the texture normal is within 90 degrees of 𝑧, the geometric normal in tangent
space. The normal can be obtained from the colour value as

�⃗�0 = 2 · 𝑠0 −
(︀
1 1 1

)︀T
,

�⃗�1 = 2 · 𝑠1 −
(︀
1 1 1

)︀T
.

(3.36)

Then, to interpolate directions 𝑛0 towards 𝑛1 by 𝛼, partial derivative blending [29] can
be applied as

�⃗�𝑑 =

⎛⎜⎝(1− 𝛼) · 1
�⃗�0,𝑧
· �⃗�0,𝑥 + 𝛼 · 1

�⃗�1,𝑧
· �⃗�1,𝑥

(1− 𝛼) · 1
�⃗�0,𝑧
· �⃗�0,𝑦 + 𝛼 · 1

�⃗�1,𝑧
· �⃗�1,𝑦

1

⎞⎟⎠ , (3.37)

3. Implementation 41

yielding an unnormalised vector. A vector of unit length is obtained as

�̂�𝑑 = �⃗�𝑑

‖�⃗�𝑑‖
. (3.38)

This form provides adequate results for blending between materials, as pointed out in
[29], and also seems to be a good fit for the similar problem of blending between blend
stops for normal maps. For the adding of the resulting �̂�𝑑 to the base material, however,
the technique provides inadequate results with unintended flattening of geometric detail.
The underlying problem is different, since the resulting normal �̂�𝑑 poses a detail normal
that should be added on top of the base normal, sampled from the original material
�⃗�𝑏. As a specific constraint, details of the original normal map should be retained and
augmented with �̂�𝑑, rather than being flattened out. The partial derivative blending
just shown does not always produce satisfactory results for this step, since it masks the
base texture with high alpha values instead of augmenting it with more details.

Better results are achieved with the reoriented normal map blending technique as
described in [29], which is tailored to the described problem. We build a transformation
𝑇 such that

�⃗�𝑏 = 𝑇 · 𝑧, (3.39)

that is, it rotates the geometric normal, always being 𝑧 in tangent space, towards the
tangent normal �⃗�𝑏 from the base material. We finally calculate �⃗� by applying the same
transformation to the detail normal �̂�𝑑 instead, i.e.,

�⃗� = 𝑇 · �̂�𝑑, (3.40)

yielding the final weathered normal to use in the synthesised appearance. This models
the concept of adding blemishes on top of a clean reference surface. As a last step, �⃗�
is converted back into a colour �⃗� with its components in range [0, 1] by reverting the
previously defined transformation from colour to direction, evaluating

�⃗� = 1
2 · �⃗� +

(︀1
2

1
2

1
2
)︀T

. (3.41)

External Appearance Rendering

Figure 3.5 shows a setup with Blender nodes. By applying the substance concentration
texture pixel-wise to gradient functions, new textures are created without the aid of a
sample texture. Although aitios can generate the same textures with fully opaque blend
stops of constant colour, the specification of such gradients in configuration files would be
quite tedious. After modification of the effect pipeline, the simulation inevitably needs
to be run again. Blender, in contrast, allows for rapid iteration after the substance
textures have been calculated once. By modifying the gradients within Blender, new
variations can be tested in rapid sequence, using the excellent preview capabilities of
Blender Cycles.

3.8.5 Texture Irregularities Compensation
A polygonal mesh in three-dimensional Euclidean space consists of a set of faces, with
each face defining a set of vertices in three-dimensional object space. A texture map

3. Implementation 42

Figure 3.5: A node-based setup in Blender for the synthesis of textures for rusted iron.
It takes a substance concentration map calculated with aitios as input. Output are maps
for albedo, metallicity and roughness.

additionally assigns a two-dimensional position in the Euclidean plane to each vertex,
such that each vertex has an equivalent in texture space.

Texture maps for meshes in three-dimensional Euclidean space must exhibit at least
one of two kinds of irregularities, given that not all faces lie on a common plane in
object space:

1. non-uniform texel-to-world scale,
2. texture discontinuities.

Non-uniform texel-to-world scale arises from distortion when projecting non-flat three-
dimensional geometry onto a plane for UV mapping. This process is often referred to
as UV-unwrapping. To minimise these irregularities, the primitives of a mesh can be
divided into projection groups. Each group is individually projected onto the plane, such
that the projected groups do not overlap. Edges between projection groups appear at
two distinct places in UV space and are referred to as texture seams or island margins.
Such seams pose texture discontinuities. That is, neighbouring patches in object space
are not adjacent in UV space. For instance, a three-dimensional triangle mesh can be
projected with uniform scale and without distortion of triangle aspect ratios if each
triangle is projected individually onto the plane. However, if each patch forms its own
projection group as in this example, each edge on the mesh poses a texture discontinuity.
In other words, less projection groups minimise the amount of texture discontinuities
or seams, while more projection groups provide a more uniform texel-to-world scale at
the cost of more texture seams. Note that the non-uniformity can also be added for

3. Implementation 43

artistic and technical reasons, e.g., to meet the requirement for additional detail in the
facial area of a humanoid mesh when compared to the bottom of the humanoid feet,
which will hardly ever be visible. In this case, the facial area texels will be given a low
texel-to-world scale, such that it takes up more space in the UV map.

Günther et al. use textures as their primary data structure for sediment concentra-
tions and keep track of texel-to-world scales in a pre-calculated texture to compensate
for them. To compensate for texture discontinuities, the authors propose to limit the
splat size for texture painting to a single pixel, otherwise artefacts occur [12].

Frerichs et al. propose a different approach of handling texture discontinuities in the
context of weathering simulation as an alternative to the Günther et al. approach of
limiting the splat size. The approach is based on the projection of a square centered
around the intersection point onto the affected mesh. At texture seams, the square
will be split. Each square fragment will be triangulated and individually projected into
texture space for painting. The method also proposes to augment the square with an
alpha map, such that different shapes can be drawn into texture space [10].

Both classical 𝛾-ton tracing in [4], as well as the variation presented in this thesis
store local substance concentrations in a point-based data structure independent of
any textures. This representation does not suffer from texture discontinuities, since the
points are positioned in three-dimensional space. While surfels do not have a size, similar
artefacts as for non-uniform texel scales can arise if regions of the mesh are under- or
oversampled. In these cases, surfels at a local surfel density maximum would change
their concentration at a lower rate, since interaction would be split up among more
surfels. Surfel density maxima during texture synthesis lead to some surfels having a
greater influence on the final output colour than others.

Regarding the transport of substances, the presented approach avoids such prob-
lems by generating a maximal Poisson Disk set of surfels. This guarantees a minimum
distance requirement between surfels along with the guarantee that no new surfel could
be added without violating this constraint. Hence, the distances between neighbouring
surfels are mostly uniform, in turn making the surfels influence a mostly uniform radius
around them. When in the texture synthesis step, surfels are converted to the substance
concentration texture. This is done by selecting the surfels within a radius 𝑟 around
the world-space position of the center of the texel. By modulating 𝑟 with the associated
texel-to-world scale, non-uniformity in scale can be compensated for. To avoid artefacts
at texture discontinuities, each UV island will add a user-defined bleed by extrapolating
triangles at seams.

3.9 Optimizations
A naïve 𝛾-ton tracing implementation is computationally intensive and requires large
amounts of memory. Some aspects in aitios have been optimised to better utilise avail-
able resources and to organize data into more efficient data structures.

3.9.1 Parallelism
Significant time is spent on the tracing of 𝛾-tons through scenes and calculating their
interactions with surfels. The core tracing process only requires read access to the 𝛾-ton

3. Implementation 44

currently being traced and the scene geometry for intersection tests. This observation
hints at potential for optimisation, since each 𝛾-ton could be traced independently.
Substance transport, however, additionally requires write access to both the 𝛾-ton and
the surfels. Motion deterioration requires read access to surfels and write access for the
𝛾-ton.

The implementation originally carried out substance transport directly after motion
probability deterioration during tracing. Parallel processing of two 𝛾-tons could hence
potentially write to the same surfel at the same time, if the trajectories are similar
enough that the set of interacting surfels overlaps. The implementation resorted to a
sequential implementation to avoid a race condition during updates to surfels. 𝛾-tons
are emitted one after the other, traced through the scene, interacting at each stop
until finally settling. At this point, the next 𝛾-ton can be emitted. This scheme of
tracing is akin to recursive ray tracing or a depth-first search in a tree. The results
are predictable across multiple runs of the software, given the same seed is set for the
pseudo-random number generator. The original implementation had the advantage of
being relatively simple, perfectly predictable and having advantageous space complexity
and data locality. However, only a fraction of the available resources were used, compared
to a more aggressively parallel implementation.

A mutex lock on each surfel or the use of atomic operations on surfel substance access
potentially solves the race condition on surfel updates. However, the synchronisation
cost would be considerable. Furthermore, the interaction order would be undefined,
potentially leading to slightly different results on multiple runs with the same seeding
value.

The problem has been split into a parallel tracing and deterioration part and a
sequential substance transport part. For the partly parallel implementation to reach
an equal level of predictability as the sequential tracing scheme, a breadth-first tracing
scheme can be deployed at the cost of additional memory: All live 𝛾-tons are placed in
an ordered data structure. After parallel tracing to the next interaction points is finished
for all 𝛾-tons currently in the simulation, substance transport can then have the 𝛾-tons
interact at their new positions sequentially (in the order of emission), in a next step
removing settled 𝛾-tons from the data structure. To further ensure predictable sampling
of outgoing directions, the thread-local PRNG needs predictable seeding in the tracing
worker threads. A potential solution would be to derive the seed from the index of
the ton emission and the depth of tracing before sampling. The results of this variation
would still differ slightly from results of sequential tracing due to its breadth-first nature
yielding a different, but equally consistent, interaction order.

3.9.2 Spatial Data Structures
The implemented algorithm relies on spatial lookups for commonly occurring operations,
including:

• intersections of 𝛾-tons with geometry on straight paths, in parabolic motion, in
flow,

• the selection of surfels within a radius 𝑟 for interaction, relative to an intersection
point of incident 𝛾-tons,

• 𝑛-queries for nearest surfels to a given texel offset during gathering of substance

3. Implementation 45

concentrations into textures.
These requirements in combination with the large search space for each operation war-
rant the use of spatially organised data structures.

Octree

In the first iterations of implementation, the triangle intersection part of the tracing
process was the largest bottleneck of the algorithm. The naïve triangle intersection al-
gorithm would linearly search for the nearest intersected triangle. The approach becomes
infeasible for scenes with millions of triangles. Spatial organisation for the triangles was
needed.

An Octree was implemented as the data structure for accelerated triangle inter-
section. The intersection algorithm pruned large parts of the tree if a ray for straight
trajectories did not intersect the corresponding subtree. For the piecewise linear ap-
proximation of parabolic trajectories, the trajectory would be split into line segments.
Each line segment was used for a line segment cast (raycast with limited range) in the
Octree. Without the optimisation of intersection, the piecewise linear approximation of
parabolic 𝛾-ton trajectories would have been extremely inefficient, especially for large
and detailed scenes.

kD-tree

To facilitate substance transport and motion deterioration, it is necessary to look up
nearby surfels for a 𝛾-ton that has intersected geometry at a specific point. A natural
candidate for this nearest-neighbour lookup was the kD-tree, which was also used for
surfel lookups in [4]. By organizing the surfels in a kD-tree, both the substance transport
part of the tracing process and the texture gathering could be sped up by multiple orders
of magnitude.

Chapter 4

Evaluation

Practical applicability of the presented variation of the 𝛾-ton tracing method to tex-
ture synthesis problems in weathering simulation will be evaluated. The property of
practical applicability is evaluated according to the methods defined in section 4.1 and,
for the purposes of this evaluation, consists of two main aspects. Physical validity, the
first aspect, is further described in section 4.1.1 and denotes the extent to which the
visible results of a given natural effect can be mimicked by the simulation. Practical
applicability cannot be asserted if the method is incapable of producing the results of
an effect pattern or consistently produces less convincing results than typical textures
produced for the same problem with primarily manual labour. The second aspect is the
runtime performance of the approach in terms of time and space complexity in prac-
tise. Section 4.1.2 provides a more detailed description of the methods and rationale
of the evaluation of performance. The presented approach must be scalable to com-
plex simulation scenarios with scenes of non-trivial size. Otherwise, use in production
workflows becomes infeasible and practical applicability of the method cannot be justi-
fied. Practical applicability evaluation is performed for two related chemical weathering
phenomena. Both are associated with the corrosion of metals under the influence of
wind and weather, which has been widely studied in literature. Section 4.2 provides a
short overview of corrosion phenomena and secondary effects associated with it, such
as differential flow. Based on these definitions, section 4.3 presents a simulation per-
formed with the presented 𝛾-ton tracing implementation that aims to reproduce the
described natural phenomena. Finally, in section 4.4, simulation results are presented
and evaluated.

4.1 Methodology
The main device for evaluation will be the reproduction of observed natural phenomena
found in reference photographs. For this purpose, scenes in photographs will be digitized
in a simplified form. Artefacts found in the original photographs or aspects thereof
should be reproducible with 𝛾-ton tracing on the digitized versions. The extent to which
the artefacts can be reproduced, as well as the runtime performance of the designed
simulations, will be key factors in the evaluation of practical applicability.

The evaluation aspect of physical validity of the simulation results, given each class

46

4. Evaluation 47

Score Requirements

0 Not applicable. The technique either was not designed for the weathering pat-
tern or otherwise consistently fails to reproduce it in a way that can similarly
be found in a reference photograph.

1 The weathering pattern can be reproduced in a way that is intended and noti-
cable, however clearly less convincing with respect to the reference photograph
than a typical hand-painted texture.

2 The weathering pattern can be reproduced such that the result is not easily
distinguishable from a hand-painted texture.

3 The weathering pattern can be reproduced with results that are highly com-
patible with reference photographs, with similar results being impractical to
achieve with manual texture production techniques.

Table 4.1: Values of the score for physical validity of a simulation result, along with
their definition, given a reference photograph and a hand-painted texture of the desired
weathering pattern.

of weathering effect, will be grounded on a simple model of known chemical, physical
and biological factors in play, Characteristic weathering patterns found in nature will
be identified and described on the basis of these models. As the applicability of 𝛾-ton
tracing to a class of weathering effects is evaluated, a simulation will be designed that
produces described weathering patterns. It should be noted that the primary goal is to
reach a level of validity that suffices for a convincing result, as opposed to a completely
naturalistic or realistic result. For each weathering pattern, a value will be assigned to
the physical validity of the simulation result, according to the self-set definitions laid
out in table 4.1. Section 4.1.1 further describes evaluation of this aspect.

The second part of applicability is based on runtime performance. The simulations
for physical validity, with adequate quality settings, should run within a time that
makes deployment of the technique feasible within typical game production workflows.
The evaluation of this aspect is further described in section 4.1.2.

4.1.1 Physical Validity
Evaluation of physical validity is done individually for each characteristic weathering
pattern within a class of weathering effects. To evaluate the extent to which a type of
artefact can be reproduced using a given simulation technique, a comparison of:

• reference photograph for the specific pattern,
• hand-painted texture for comparison,
• rendered simulation results,

will be performed. Given the results of this comparison, a score value can be assigned
that indicates the extent to which the simulated result is convincing for a given weath-
ering pattern found in nature. The score value is a natural number in the interval [0, 3],
that is, without intermediary values between whole numbers. The value represents a
partial result for convincingness using the definitions laid out in table 4.1. Irrespective

4. Evaluation 48

Symbol Unit Definition

𝑡𝛾 s Average time in a single iteration used for tracing of 𝛾-tons
and calculating their interactions with surfels.

𝑡T s Average iteration time used for the calculation of weathered
textures and persisting the new textures to disk.

𝑡P s Time spent on preparation tasks before the first iteration,
notably including scene deserialisation, surfel kD-tree and
Octree generation and surfel association table calculation.

Table 4.2: Definitions for measured performance metrics.

of the definitions for the score values, personal biases of the evaluator cannot be com-
pletely factored out of this assignment, since convincingness is inherently dependent on
the perception of the observer. The relatively coarse granularity of four natural numbers
as possible values, each representing a distinguishable set of requirements, is an attempt
to minimise the effects of these biases.

The unweighted arithmetic mean of all applicable scores will define the overall phys-
ical validity of results that can be achieved for the defined set of weathering patterns
using the presented technique. For scores 𝑠 ∈ 𝑆, where 𝑠 ∈ N, the combined physical
validity 𝑠 ∈ R is

𝑠 = 1
|𝑆|
·
∑︁
𝑠∈𝑆

𝑠. (4.1)

4.1.2 Runtime Performance
Performance plays a vital role in the practical applicability of the presented technique.
It will be evaluated as the amount of resources, primarily time and memory, spent
on loading, tracing, transport of substances, texture synthesis and texture persistence
during a single iteration. Specifically, the simulation should keep running times low
enough such that experimentation and parameter tweaking by the artist is not severely
inhibited with small to medium-sized scenes. The bulk of experimentation is expected to
be performed on such small or medium test scenes, to be later applied to larger scenes,
once the details of the simulation are worked out. Extremely large scenes may have
longer running times, where experimentation is hardly possible. Memory requirements
however, should still be low enough that such non-trivial scenes can still be simulated,
albeit with higher iteration times. These aims, along with adequate physical validity,
must be met to attain practical applicability.

The evaluation of runtime performance will thus be based on three key metrics, laid
out in table 4.2. The metrics will be measured on modified versions of the simulations
for physical validity with varying counts of entities and texture sizes. Remaining running
times that have not been captured, such as simulation specification parsing or logging,
are sufficiently masked by the captured running times to be considered negligible for
the purposes of this evaluation.

The implementation leaves it up to configuration how many simulation iterations

4. Evaluation 49

are calculated and how often weathered textures are exported. Per default, the texture
synthesis pipeline is executed before the first iteration and after the last iteration. The
initial synthesis process is considered time zero of the simulation and is useful as a
reference for the weathered appearance calculated with the first simulated substance
distribution. This initial output can differ from the input scene if the simulation is
configured in such a way that objects initially carry substances in their surfels, even
before the first tracing iteration.

Using the default configuration, 𝑛 iterations of simulation take approximately

𝑡min(𝑛) = 𝑡P + 𝑛 · 𝑡𝛾 + 2 · 𝑡T, (4.2)

to complete. Providing custom settings, texture synthesis can be performed after every
𝑚 ≥ 1 iterations, yielding intermediate states of weathering. In this case, the simulation
takes

𝑡(𝑛, 𝑚) = 𝑡P + 𝑛 · 𝑡𝛾 +
(︁

1 +
⌊︁ 𝑛

𝑚

⌋︁)︁
· 𝑡T, (4.3)

to run to conclusion, though intermediate results are immediately usable. The first form
𝑡min(𝑛) with only two instances of texture synthesis is especially relevant for the prac-
tical applicability of the technique, since this mode is most likely to be used by artists
when tweaking parameters of a simulation. If for a simulation, 𝑡min(1) < 1800 does not
hold true, it is considered practically inapplicable in terms of performance. Tweaking of
the simulation configuration has become impractical at this point. Even smaller wait-
ing times on the order of fifteen minutes can be considered an inconvenience, though
the technique can at least be considered usable. The complexity of scenes where the
mentioned property still holds true establishes the scalability of the approach to larger
scenes. Note that the performance of the actual rendering process, based on textures
that have been generated with aitios, is not under evaluation. This part of the function-
ality is covered by Blender in this work and is unrelated to the core algorithm. Where
possible, metrics will be put into context by comparing them to related techniques.

Measurement

The partial running times described in section 4.2 are captured with benchmarking func-
tionality built into aitios. This functionality writes the measured performance metrics
to CSV files in the background with little overhead. Internally, the monotonic system
clock is used for measurement, rather than CPU time. When timings for multiple iter-
ations are available, the values are averaged. As described in equations 4.2 and 4.3, the
time required for a full simulation depends on the amount of iterations and the effect
interval, but can trivially be calculated from 𝑡P, 𝑡𝛾 and 𝑡T.

All metrics have automatically been captured in a single session on an evaluation
machine with hardware specifications in table 4.3. Apart from performance measurement
and system background processes, the machine was kept idle during evaluation.

Relative Performance

While these absolute time values provide useful information by themselves, a compar-
ison to the running times of related approaches is also of interest. Accurately com-
paring the resulting performance characteristics with other algorithms, however, poses

4. Evaluation 50

CPU AMD Ryzen 5 1600, 6 × 3.20GHz, 64-bit
RAM Crucial CT2K8G4DFD8213, 8GB × 2, 2133 MT/s
Swap 16GB on SSD (Crucial MX300 CT525MX300SSD1 525

GB, 530 MB/s sequential reading)

Table 4.3: The most relevant hardware specifications of the machine used for runtime
performance evaluation. See hardwarespecs-directory on the accompanying CD for de-
tailed specifications.

practical problems. In the common case where no reference implementation is avail-
able for the other algorithm, the comparison can only produce fuzzy results without
re-implementation of the algorithm to compare to. In this case, the only performance
metrics available, if any, might be the ones published along with the paper that origi-
nally proposed the technique. In the concrete case of comparing metrics captured on two
different sets of hardware, a high degree of uncertainty is involved. The farther apart
the two points in time are at which metrics were captured, the higher the uncertainty
of relative performance is, due to advancements in computer hardware made in the
meantime. Hence, comparing the aitios implementation with the performance of other
techniques, only a rough estimate can be given. For this estimate, only similar effects
calculated for scenes that are also similar in complexity, will be calculated to cautiously
answer the question of relative performance.

Scalability

While the question of relative performance can only cautiously be answered, the evalu-
ation will also aim to provide insights into the scalability of the approach, which cannot
easily be boiled down to a single number. Past publications have, for the most part,
provided performance numbers on some select, small to medium-sized scenes with some
tens of thousands of triangles. While these numbers give a first impression of the perfor-
mance of the approach, it gives little information on the limits of the approach. To learn
about these limits, the evaluation will make use of stress tests. Simulation scenes will be
systematically scaled up in terms of entity count, triangle count and other simulation
metrics. To obtain more complex variations of geometry of simulation scenes and emis-
sion shapes, the command-line tool litter1 has been developed. The used functionality
in litter derives complex variations by duplicating all elements in OBJ files and arrang-
ing them in larger grids of configurable cell size. After calculating consistent, complex
variations for scene geometry and 𝛾-ton emission meshes, the emission count of 𝛾-ton
sources needs to be manually scaled up to match the grid size. Otherwise, the 𝛾-ton
hits per square unit of area on scene geometry would decrease with the increased emis-
sion shape surface area due to duplication, resulting in less intense weathering effects.
Other simulation properties naturally grow with larger grid sizes, such as the surfel
count, which is configured with the minimum surfel distance 𝑟, or the generated texture
count, which is carried out on a per-entity basis. The resulting performance metrics for

1The tool litter for geometry stress testing is publicly developed by the author on GitHub.

4. Evaluation 51

the stress test variations will be arranged into tables and graphs for insights into the
scalability of aitios.

4.2 Corrosion
The effects under evaluation primarily belong in the domain of corrosion. Widely found
in both urban and rural environments, corrosion poses a readily observed weathering
phenomenon. The visible results of this class of weathering effect come in different
flavours, depending on the composition of the alloy or metal and the environment.
With some exceptions such as gold and platinum, most unprotected metals that are
exposed to environment conditions are subject to corrosion. Corrosion initially attacks
metals on a chemical level. Physical factors, such as changes to the material integrity in
response to corrosion, also play a major role in shaping the visual results of the effect.
Biological factors are not considered.

4.2.1 Patterns
Corrosion occurs in many different forms. All forms share the common characteristic of
converting the metallic base material to a more chemically stable form. Typical corrosion
products are oxides and salts of the corroding metal, such as sulphites and nitrates [7].
In the following, some types that can be readily observed in nature will receive closer
attention.

Rusting Corrosion

The formation of some iron compounds due to corrosion is often referred to as rusting. It
is a subset of corrosion effects where iron interacts with its environment through redox
reactions, forming at least one of sixteen known chemical compounds associated with
rusting corrosion. These compounds are known as iron oxides and iron oxyhydroxides.
Typical rust has a characteristic earthy, dark-red colour. Rusting corrosion products are
flaky, porous and easily soluble in water. Figure 4.1 shows typical examples of rusting
in nature. Artists impressions of rusting objects with manually made textures can be
seen in figure 4.2.

Patination

Patina denotes a highly layered material film on the surface of some metallic objects,
especially copper and bronze [9]. Typical brass patination can be seen in figure 4.3 and
figure 4.4 shows a 3D scan of a patinated equestrian statue along with a simplified and
manually textured version. The appearance of patina is highly dependent on the unique
combination of base metal and environmental factors. It develops due to adding and
removal of materials on the surface. This process is mostly driven by chemical processes
of corrosion. These processes are enabled by exposure of the metal to water, air and
environment-specific minerals.

Typical patina is quite thin and leads to a behaviour often referred to as passiva-
tion, where underlying layers are protected from corroding by upper layers. Aluminium
is another prime example of this. It develops a thin layer of aluminium oxide when

4. Evaluation 52

(a) (b) (c) (d)

Figure 4.1: Typical appearances of rusting corrosion in nature. (a) shows typical primary
flow effects on a rusting gate, (b) shows moderate surface corrosion on iron [34], (c)
exhibits intense corrosion with destructive effects, especially cracking and flaking [35].
Finally (d) shows a pure sample of an iron oxide [30], exhibiting characteristic colouring
that can be observed in most instances of rusting corrosion as its primary reaction product.

(a) (b)

Figure 4.2: Artist renderings of rusting objects with hand-painted textures. (a) depicts
a fantasy helicopter [33] and exhibits typical surface rust colours and patterns, (b) shows
a rusting sink [28], posing an artist impression of differential flow.

first exposed to air, protecting the bare aluminium underneath from corrosion. Such
behaviour leaves objects quite chemically stable, but still leaves it susceptible to other
attacks such as contact with strong acids. Apart from patination on copper and other
materials, rusting on some iron-containing alloys such as weathering steel exhibit similar
behaviour.

Section 2.2.1 provides an overview of the patina technique by Dorsey and other
researchers. According to them, the development of patina is influenced by many envi-
ronmental and geometric factors, including, among others:

• wetness, increasing patination rate,
• temperature and exposure to sunlight, which causes water to evaporate especially

during the day and in areas accessible to sunlight, locally reducing the rate of
corrosion,

• stagnant water increases the rate of patination, decreasing patination on inclined
and horizontal surfaces and increasing patination in inaccessible areas,

4. Evaluation 53

(a) (b)

Figure 4.3: Patina on a brass statue. Variation (a) shows the statue after many years of
intense patination with strong flow artefacts on the stone pedestal [32]. In variation (b),
the statue has been cleaned of patina [31].

(a) (b)

Figure 4.4: Renderings of two patinated versions of the equestrian statue of Napoleon.
Variation (a) shows the geometry and albedo texture of the original 3D-scan by Ima
Solutions [37] rendered with constant metallicity and roughness over the model. Variation
(b) is a simplified and re-textured variation by Loïc Norgeot with manually designed
albedo, metallicity, roughness and normal maps [36].

• polishing and pitting de- respectively increase patination rate [6].

Destructive Corrosion

Rather than building a film on top of the base material, destructive corrosion leads to
loss of material in the form of holes and deformations [9] and may eventually lead to

4. Evaluation 54

complete disintegration of the base material. This is the case with many flaky corrosion
products, such as in acidic corrosion and some instances of rusting corrosion. In figure
4.1 (c), a rusting chain shows noticeable crackling, leading to material flaking off. This is
quite possibly due to expansion of the rusting metal and could be seen as an instance of
destructive corrosion. In such cases, the porous resulting weathering products seem not
to provide protection for the underlying material. Given enough time under exposure
to the weathering source, the process will likely only cease once no more base material
is left to fuel the reaction.

Differential Flow

Many corrosion processes involve fluids as part of a chemical reaction. Rusting corro-
sion reactions, for instance, often involve water molecules to form iron oxyhydrates. In
addition to their chemical role, fluids also play a role in the physical distribution of cor-
rosion products throughout their environment. Soluble corrosion products get dissolved
by incident fluids to be re-deposited in different places in a process often referred to
as differential flow. Dorsey et al. describe differential flow in their work on flow and
changes in appearance [7], while classical 𝛾-ton tracing describes the effect as global
transport effects [4]. The effect heavily influences the appearance of the corroding metal
as well as of neighbouring objects. Observing the patinated statue in figure 4.3 (a), brass
corrosion products get dissolved in rain, leaving long streaks on the stone pedestal that
the statue is mounted on as well as on the statue itself. An example of differential flow
on a hand-painted texture can be seen in figure 4.2 (b).

4.3 Simulation Design
To evaluate the practical applicability of 𝛾-ton tracing to corrosion effects, the described
natural effects will be reproduced with weathering simulation. For this purpose, the cor-
rosion of statues of iron and copper under the influence of air and rain will be simulated
with aitios. The target model is an equestrian statue of Napoleon approximately 3.5 me-
tres in height and visually similar to the statue in figure 4.3, but made of copper instead
of brass. A scanned, textured model made by the Paris-based company IMA Solutions
using an Artec Eva scanning device is available [37] and a rendering of it depicted in fig-
ure 4.4 (a). Loïc Norgeot provides a simplified version with adjusted texture coordinates
and hand-painted textures [36], with a rendering in figure 4.4 (b) that is used as the
second reference for comparison. A second evaluation for rusting corrosion is performed
on the same model, with reference imagery available in figure 4.1 and renderings with
hand-painted textures in 4.2 for comparison.

To create a simulated weathered appearance, the simplified model by Norgeot was
used as simulation geometry. The horse statue has been assigned a base material for the
metal under evaluation with mostly uniform, polished, post-manufacturing appearance.
The base material maps have mostly constant colour with only subtle manufacturing-
related blemishes such as mild pitting effects. Texture maps for albedo, metallicity,
roughness and displacement are part of the base material. Analogously, the pedestal
has been given a sandstone-like base appearance. Using the consistent transport mode,
the influence of rain and air on the entities over time is simulated with two 𝛾-ton sources

4. Evaluation 55

Figure 4.5: Trajectories of a small subset of the emitted 𝛾-tons from the sky (a) and
from the prevailing wind direction (b).

that simulate the distribution of humidity and existing corrosion products throughout
the scene. A statue-specific transfer ageing rule models the gradual corrosion in the
presence of water, while a global deterioration ageing rule models the evaporation of
water. These ageing rules kick in before each texture generation. Performance metrics
are accumulated over the iterations of the simulation process. Subsequent runs of the
simulation with modified workloads are used to capture additional performance data.
Analysis of these metrics determines runtime performance. Note that the final rendering
process with Blender Cycles using the materials weathered with aitios is considered
unrelated to 𝛾-ton tracing itself and will not be evaluated for performance.

4.3.1 Scene
To adapt the simplified version of the 3D scan for the simulation, it has been transformed
in the following ways:

1. scaled the statue to approximately match the real size of 3.5 metres, assuming a
conversion factor of 1 between metres and world-space unit lengths,

2. added simplified version of the stone pedestal in figure 4.3 under statue to allow
for differential flow to span multiple entities.

For simulation, two variations of this preprocessed scene will be used that differ in the
material of the statue. Iron and brass will be evaluated separately by applying that
material.

4.3.2 Emission
Rain exposure will be simulated by the emission of 𝛾-tons from two primary sources
depicted in figure 4.5. In total, 150000 humidity-carrying gammatons are emitted for
the main variation. Two thirds are emitted from a hemispherical emission shape that
represents the sky. Initial trajectories are diffusely sampled over the upper hemisphere
of the uniformly selected emission point on the emission mesh, as to allow a wide range
of possible trajectories, rather than having all 𝛾-tons fly in direction of the scene origin.

4. Evaluation 56

The last third of 𝛾-tons is emitted non-diffusely from a spotlight-like source that models
the prevailing wind direction.

The 𝛾-ton properties are modelled after rain drops. Since water drops carry weight
and their initial velocity is relatively high, it is plausible for them to enter a parabolic
trajectory after their first encounter with the surface and splatter onto nearby objects.
In such a case, part of the water would remain at the initial impact location. This
behaviour is modelled by having part of the 𝛾-tons bounce after the first encounter.
Further, water has a natural tendency to adhere to a surface and flow over it. The water
drops have a relatively low weight and low viscosity. This is achieved by assigning a
high value to the flow motion probability of the tons and assigning the 𝛾-reflectance of
surfaces for flow to a low value. Considering these desired behaviours, the initial motion
probabilities for rain 𝛾-tons are defined as

𝑝𝑠 = 0, 𝑝𝑝 = 0.05, 𝑝𝑓 = 0.9. (4.4)

4.3.3 Material Properties
The metal is assumed to have a low amount of holes and pores, giving it low absorption
and absorptivity. This property allows water drops to flow relatively long distances over
the metal surface of the model before it has been fully absorbed. Consequently, the
𝛾-reflectance of both iron and copper will be defined as

Δ𝑠 = 1, Δ𝑝 = 0.05, Δ𝑓 = 0.01. (4.5)

The stone pedestal is thought to be made of porous limestone. The porosity gives it a
relatively high absorption and absorptivity when compared to metals. This is modelled
with a relatively high value for flow motion probability deterioration, i.e.,

Δ𝑠 = 1, Δ𝑝 = 1, Δ𝑓 = 0.1. (4.6)

4.3.4 Interaction
The absorption and deposition constants of 𝛾-tons have been configured to occur within
a radius of 1 cm with absorption constants of

𝑎water = 0.07, 𝑎patina = 0.2, 𝑎rust = 0.2. (4.7)

The deposition rates of surfels have similar values between 0.05 and 0.1 for the metals,
with some tweaking performed to better match the natural weathered appearance. The
deposition rate of the stone is set at 0.6 for both corrosion products.

4.3.5 Ageing Rules
Both simulations will have water evaporate from surfels at a constant rate of −50% per
iteration from iron, brass and stone. Air exposure will be assumed to be uniform on the
model and is implemented as ageing rules specific to the statue that process water into
corrosion products. For iron, all surfels will process 15% of absorbed water into new rust
at the end of each iteration. The rule does not apply to stone, however rust can flow
from the statue onto the pedestal below for differential flow. Rust is the only substance
in the rust simulation with a direct effect on texture synthesis on both the statue and
the pedestal. In the simulation of patina, the transfer rule processes only 8%.

4. Evaluation 57

𝑐rust = 0.2 𝑐rust = 0.3 𝑐rust = 0.5 𝑐rust = 0.6

𝑐rust = 0.7 𝑐rust = 0.8 𝑐rust = 0.9 𝑐rust = 1.0

Table 4.4: Eight of nine texture samples used for the synthesis of rusted textures. The
numbers below the textures indicate the concentration cenith, at which the texture sample
has maximum influence over the synthesised texture. The ninth texture has its cenith at
0 and is fully transparent.

4.3.6 Effect Setup
The general scheme for texture synthesis in aitios is described in detail in section 3.8.4.
Both the statue and the pedestal have a base material defined. The base material is
mostly devoid of blemishes and contains only deformations that can be directly at-
tributed to the manufacturing process.

The corrosion products stored in concentration maps will guide layering effects on
top of the base material. All metals receive a synthesised albedo, normal and roughness
texture depending on the respective corrosion products. The iron variation will addi-
tionally use displacement mapping to account for deformations seen in additive and
destructive corrosion. A similar layering effect will be used for the sandstone pedestal
to account for differential flow. The texture sequence used for the finishing layer of the
albedo texture in the iron statue in the rusting corrosion simulation can be seen in
table 4.4, along with the concentrations at which each texture sample has maximum
influence. This value is denoted the cenith of the sample. While the rust samples encode
high-frequency surface details, most other samples are of almost constant colour. The
samples for patina, having a more uniform appearance in nature as rust, are tiny regions
of the horse statue photograph with modified opacity.

4.4 Results
This section presents renderings for the evaluation of physical validity as well as perfor-
mance metrics for the evaluation of runtime performance. Resulting renderings of the
rust evaluation are depicted in increments of ten iterations in table 4.5. Renderings of

4. Evaluation 58

the patina evaluation are depicted in table 4.6. An interpretation of the resulting ren-
derings in terms of physical validity, using terms defined in section 4.2, is organized in
table 4.7. Both sequences seem to provide acceptable visual quality for the problem at
hand and will be evaluated in detail in section 4.4.1 for physical validity. Performance
data of the technique for more complex variations of these two simulations is available in
tabular form in table 4.8 for patina and table 4.9 for rust, with more detailed evaluation
in section 4.4.2.

4.4.1 Physical Validity
Table 4.7 shows the numeric results for physical validity in the context of corrosion
effects, as selected by the author. Corrosion effects can quite naturally and intuitively
be captured with 𝛾-ton tracing. An effective approach involves at least two substances
with one representing humidity and the others representing corrosion products.

The resulting substance textures themselves, with sufficient island bleed, are resilient
in the presence of texture discontinuities. The underlying surfel representation is three-
dimensional, providing smooth interpolation across seams. Only in the special cases
of constant colour textures and textures adapted to the UV maps of affected objects,
however, does this property extend to the final generated textures. Uninformed texture
samples will generate similar mapping artefacts as when the texture would be directly
applied to the object.

Nonetheless, high-frequency texture samples are recommended for weathering effects
that require fine-grained detail, such as the rough and porous appearance of rusted iron.
The substance distribution can determine the low-frequency weathering state across
the model without individual holes, scratches, or comparable high-frequency weather-
ing patterns. This detail will then be added in texture synthesis, when low-frequency
substance controls the added high-frequency detail. The results are visually pleasing
without the additional processing power required to use significantly more surfels and
𝛾-tons to increase the level of detail.

A similar level of detail in the final textures is not easily reachable using only constant
colour textures for texture synthesis or a gradient-based approach as outlined in the
implementation chapter in section 3.8.4. Firstly, an excessive amount of surfels might
be needed to match the level of detail required, e.g., to simulate individual holes due
to corrosion, leading to increased runtime complexity. Secondly, to use the increased
amount of surfels effectively for fine-grained patterns, enormous amounts of 𝛾-tons with
low interaction radii need to be emitted. While the results of such an approach might
be satisfactory visually, performance quickly declines with increasing surface area of the
simulation scene.

The physical validity with a combined value of 𝑠 = 1.75 suggests that the simu-
lated results are not significantly less convincing than hand-painted textures. Neither
a significant advantage nor a significant disadvantage in terms of convincingness of the
simulated versions can be asserted on the basis of the resulting scores. Consistent weath-
ering among objects with similar exposure, however, is less of a challenge than with
hand-painting. Simulating also provides opportunities to re-use parts of a simulation
configuration in different contexts and to re-arrange objects later on in the production
process, re-calculating weathering signs accordingly.

4. Evaluation 59

𝑡 = 0

𝑡 = 10

𝑡 = 20

𝑡 = 30

𝑡 = 40

(a)

𝑡 = 0

𝑡 = 10

𝑡 = 20

𝑡 = 30

𝑡 = 40

(b)

𝑡 = 0

𝑡 = 10

𝑡 = 20

𝑡 = 30

𝑡 = 40

(c)

Table 4.5: Renderings for the evaluation of rusting corrosion. (a) is the evaluation se-
quence, the equestrian statue of Napoleon in different stages of weathering. 𝑡 = 0 is the
base material without weathering simulation. 𝑡 > 0 is the state after 𝑡 iterations of weath-
ering simulation. (b) and (c) additionally show the same simulation with one extremely
flat geometry and one curved geometry.

4. Evaluation 60

𝑡 = 0

𝑡 = 10

𝑡 = 20

𝑡 = 30

𝑡 = 40

(a)

𝑡 = 0

𝑡 = 10

𝑡 = 20

𝑡 = 30

𝑡 = 40

(b)

𝑡 = 0

𝑡 = 10

𝑡 = 20

𝑡 = 30

𝑡 = 40

(c)

Table 4.6: Renderings for the evaluation of patina (a). Equestrian statue of Napoleon in
different stages of weathering. 𝑡 = 0 is the base material without weathering simulation.
𝑡 > 0 is the state after 𝑡 iterations of weathering simulation. (b) and (c) show the same
simulation operated on different geometries.

4. Evaluation 61

Score Rationale

Destructive
Corrosion 2 Reasonably convincing implementation with displacement map-

ping for smaller-scale deformations. However, objects will not dis-
integrate or break apart. Gradual development of cracks could be
modelled with multiple blend stops, where new cracks abruptly
appear instead of blending in. The 𝜇-ton system by Kider can
simulate parts falling off. Weathering in texture space by Bellini
and other researchers seems to more convincingly simulate grad-
ual crack development. Hand-painting does not seem to have a
clear edge over simulation.

Rust 2 Implementable as humidity-based ageing rule. Looks convincing
if texture samples encode high-frequency rust details. Not easily
distinguishable from an artist rendering of a rusted object.

Patination 2 Easily implementable, can simulate effects of environment and
material composition as well as geometric factors such as curva-
ture and exposure. While somewhat convincing, it is challenging
to model the colour progressions of patina in a way that each con-
secutive frame looks convincing. The result compares favourably
to the brass statue reference photograph, exhibiting similar effects
on appearance for both accessible and inaccessible areas, albeit
with different colouring. Hand-painted patina does not seem to
have a clear edge over the simulated variant, but seems also con-
vincing.

Differential
Flow 1 Material can be globally transported among objects to simulate

differential flow. Prime use case for 𝛾-ton tracing. However, can-
not capture some advanced properties of water flow such as self-
repulsion or saturation that can be present in a hand-painted
texture (See figure 4.2), but also in simulated textures with the
flow approach by Dorsey and other researchers. In effect, the flow
artefacts shown in the simulation are recognizable as synthetic
and inexact, making the before-mentioned techniques clearly su-
perior.

Physical
Validity 1.75 Arithmetic mean.

Table 4.7: Results of the evaluation of corrosion.

Rust: Produces convincing results for rusting corrosion of some kinds of iron. The
shading of types of iron that exhibit some sort of passivation (cast iron, weathering
steel, etc.) can be simulated by applying layers to base materials that account for albedo,
metallicity and roughness of the emerging rust. Depending on the intensity of additive
or destructive effects of the rusting process, deformations can be accounted for using
normal maps (small-scale deformations), or using displacement maps (medium-scale

4. Evaluation 62

deformations) on most target models. However, since 𝛾-ton tracing includes no dynamics
engine, objects can not automatically crack or fall apart in a physically accurate way
in response to rusting processes over hundreds of years. Using the example, no matter
how intensely corroded the legs of the horse of Napoleon are, the statue will never fall
over.

Patination: When comparing the simulation result with the hand-painted version of the
patinated Napoleon statue, none of the 56 simulated frames bear a striking resemblance.
The hand-painted version, while certainly convincing, also differs quite a lot from the
3D-scanned version. Apart from the relatively shiny appearance, the artist chose to add
dark, flow-like streaks in some places, differing from the streakier parts of the scanned
variation. Closely observing the 3D scanned version, geometric factors are more obvious
than in the hand-painted and in the simulated version. Inclined surfaces with low global
accessibility, such as the horse legs, seem to develop noticeable dark streaks that could
be attributed to water dissolving some of the patina and redepositing it. While such
streaks are also present in the simulated version, the relationship to geometry is much
more obvious in the 3D scanned version. Note that the scanned model, consisting of
millions of triangles, has vastly more geometric detail.

Validity of Related Techniques

Apart from 𝛾-ton tracing variations, there are quite specialised techniques tailored to
the exact problem at hand. One such approach for Patina by Dorsey et al. has been
described in section 2.2.1 and stands out due to the degree of physical and chemical
insight applied to the problem. The difference in available substances in urban, marine
and rural environments described by Dorsey et al. in their work on metallic patinas
[6] can be captured with additional substances in 𝛾-ton tracing. However, there is no
obvious equivalent for their surface operators, such as the polishing operator. While
global accessibility or water flow do not play a role in the patination approach by Dorsey
and Hanrahan, the results still look quite convincing. Being specialized to copper patina,
the approach takes multiple types of corrosion products into account that are unique
to the corrosion of copper. For instance, the composition of copper salts is attributed
to available minerals in the environment and urban patina will look distinct from rural
patina.

The flow approach by Dorsey et al. [7] (see section 2.2.2) may provide more accu-
rate flow artefacts, due to their force-based approach more accurately simulating fluid
dynamics than the probabilistic motion approach in 𝛾-ton tracing.

Appearance Manifolds, described in detail in section 2.3.1, might be better suited
to generate fine-grained details in the presence of texture discontinuities. The approach,
however, explicitly does not specify an algorithm to calculate the weathering degree
across the model surface, instead proposing to delegate this step to other simulation
techniques or user configuration [26]. Substance distributions calculated with 𝛾-ton trac-
ing might be a good fit for this sub-problem in Appearance Manifold weathering.

As outlined in section 2.4.1, Bellini and other researchers present a technique to
calculate time-varying sequences of textures directly in the image plane and based on
a single input texture as the only relevant user interaction. Artefacts gradually appear

4. Evaluation 63

256 × 256 512 × 512 1024 × 1024 2048 × 2048 4096 × 4096

8 𝑡T = 6.29
𝑡𝛾 = 32.29
𝑡P = 12.26

𝑡T = 7.81
𝑡𝛾 = 32.14
𝑡P = 14.01

𝑡T = 11.50
𝑡𝛾 = 32.20
𝑡P = 19.98

𝑡T = 17.35
𝑡𝛾 = 36.95
𝑡P = 39.80

—

18 𝑡T = 13.96
𝑡𝛾 = 211.71
𝑡P = 28.56

𝑡T = 17.47
𝑡𝛾 = 213.33
𝑡P = 32.86

𝑡T = 26.06
𝑡𝛾 = 211.47
𝑡P = 47.95

— —

32 𝑡T = 24.95
𝑡𝛾 = 218.31
𝑡P = 52.89

𝑡T = 31.01
𝑡𝛾 = 220.86
𝑡P = 61.09

𝑡T = 46.06
𝑡𝛾 = 220.44
𝑡P = 90.24

— —

50 𝑡T = 38.70
𝑡𝛾 = 960.26
𝑡P = 85.05

𝑡T = 48.73
𝑡𝛾 = 959.64
𝑡P = 99.90

𝑡T = 551.19
𝑡𝛾 = 987.04
𝑡P = 184.61

— —

72 𝑡T = 54.78
𝑡𝛾 = 993.44
𝑡P = 127.50

𝑡T = 69.07
𝑡𝛾 = 991.53
𝑡P = 150.86

— — —

Table 4.8: Performance metrics of the patina corrosion simulation. 𝑡T denotes the time
spent on texture synthesis, per iteration. 𝑡𝛾 is the time spent on the actual simulation,
that is, 𝛾-ton tracing and substance transport. The columns represent constant texture
sizes (column headers) with growing entity counts (row headers) towards the bottom of
the table. Where no data is specified, the technique is deemed infeasible, either because
𝑡min(1) > 3600 or because the simulation crashed due to insufficient available memory. If
enough memory were supplied, 𝑡min(1) is still expected to exceed one hour.

one after the other, instead of blending in [2], as would be the case in the presented
approach. This difference is especially obvious in the case of cracking patterns. The
presented blending-based approach cannot handle such highly stochastic patterns in
texture samples in an equally convincing way. One possibility with the presented ap-
proach would be to prepare consecutive states of crackling in advance, where additional
cracks are added on top of the last cracking state. The blend stops could then be set up
such that each cracking state appears twice, the second instance having the same cenith
as the next cracking state, such that cracks only abruptly appear instead of blending
in. The Bellini et. al. approach, however, could achieve similar effects with a single
input texture and at high quality. Results in the Time-varying Weathering in Texture
Space-approach are quite impressive in the plane, yet the application of these textures
to complex, three-dimensional, UV-mapped objects, gracefully handling texture discon-
tinuities and with frame-to-frame consistency, can be considered a non-trivial problem,
as it is with the presented 𝛾-ton tracing variation.

4. Evaluation 64

256 × 256 512 × 512 1024 × 1024 2048 × 2048 4096 × 4096

8 𝑡T = 12.81
𝑡𝛾 = 32.09
𝑡P = 13.57

𝑡T = 15.01
𝑡𝛾 = 36.04
𝑡P = 15.40

𝑡T = 18.54
𝑡𝛾 = 32.05
𝑡P = 21.01

𝑡T = 32.37
𝑡𝛾 = 32.39
𝑡P = 39.78

𝑡T = 499.39
𝑡𝛾 = 34.72

𝑡P = 123.70
18 𝑡T = 28.25

𝑡𝛾 = 212.30
𝑡P = 30.97

𝑡T = 31.99
𝑡𝛾 = 213.00
𝑡P = 35.22

𝑡T = 41.89
𝑡𝛾 = 214.17
𝑡P = 49.98

𝑡T = 72.79
𝑡𝛾 = 214.44
𝑡P = 98.57

—

32 𝑡T = 50.33
𝑡𝛾 = 223.98
𝑡P = 56.83

𝑡T = 57.05
𝑡𝛾 = 220.42
𝑡P = 64.86

𝑡T = 73.91
𝑡𝛾 = 220.12
𝑡P = 94.18

𝑡T = 554.56
𝑡𝛾 = 228.89
𝑡P = 215.22

—

50 𝑡T = 78.65
𝑡𝛾 = 957.94
𝑡P = 91.59

𝑡T = 89.41
𝑡𝛾 = 957.56
𝑡P = 106.07

𝑡T = 117.98
𝑡𝛾 = 960.40
𝑡P = 156.06

— —

72 𝑡T = 113.35
𝑡𝛾 = 993.93
𝑡P = 137.35

𝑡T = 128.48
𝑡𝛾 = 990.82
𝑡P = 158.18

𝑡T = 311.05
𝑡𝛾 = 1003.58
𝑡P = 244.37

— —

Table 4.9: Timings for the rusting corrosion simulation.

0 10 20 30 40 50 60 70 80
0

100
200
300
400
500
600
700
800
900

1000
1100

Entity Count

𝑡
[s]

𝑡T for 512× 512
𝑡T for 1024× 1024
𝑡T for 2048× 2048
𝑡𝛾

Figure 4.6: Performance metrics of the rusting corrosion simulation. 𝑡T denotes the part
of the iteration spent on texture synthesis. 𝑡𝛾 is the part of the iteration time used for
𝛾-ton tracing and substance transport. The sharp spike in 𝑡𝛾 at 50 entities is assumed to
occur due to usage of swap space on disk becoming necessary for the application to run.

4. Evaluation 65

4.4.2 Runtime Performance
All performance metrics have been captured on a machine with hardware specifications
described in table 4.3. To learn more about the performance-defined practical limits
of the algorithm, two techniques to derive variations of the simulations with increased
workload have been defined. Variations of textures size and entity count are used in
combination to create a matrix of running times for each of patina and rust, listing the
performance of combinations of entity count and texture size (see tables 4.8 and 4.9).
Also see the graph in figure 4.6, depicting the growth of running times for different
texture resolutions with respect to entities in the scene for rust simulation.

Texture Size Limitations: One set of variations differs from the base simulation in the
resolution of the generated textures. There are variations for 512 × 512, 1024 × 1024
(base size), 2048 × 2048 and 4096 × 4096. The resulting iteration times are depicted
in 4.6. The system scales fairly well until 1024 × 1024 as the resolution for each of
the generated textures, with 𝑡T growing almost linearly with the entity count, until
reaching approximately 72 objects with large surface area. 2048× 2048 remains usable
until approximately a dozen objects, depending on the simulation, and 4096 × 4096
seems to only be practical for less than eight objects. Even larger textures from 8192×
8192 upwards currently seem impractical. For one, the image files get fairly large at
8192×8192, using up about 15MB on disk per file. Each of the files needs to be encoded
and written to disk in a blocking manner, which takes quite a while for dozens of
textures. For accumulating effects, the textures need to be loaded from disk again.
The implementation currently only keeps the surfel association tables permanently in
memory. The surfel association table optimisation, however, seems counterproductive
for such large texture sizes, especially when combined with high entity counts. The high
memory consumption of keeping all these tables in memory leads to excessive swap
space usage or even crashes, when swap space is depleted as well. All other textures,
e.g., blend stops, need to be loaded from disk again whenever needed. This is desired
behaviour in principle, limiting the amount of memory used at one instant in time. A
more sophisticated caching strategy for textures can potentially provide a significant
increase in performance for simple scenes, where most textures fit into memory, as
well as prevent some crashes on extremely complex scenes, which need most available
memory for surfels and triangles, such that most textures have to be cached on disk.

Entity Count Limitations: The previous performance evaluation variation varied a single
parameter, namely the output texture sidelength. The following set of variations only
varies the emission count and transforms the simulation scene instead. Not a single
statue, but a grid of statues on pedestals is the new simulation geometry (see figure
4.7). Each instance of statue and pedestal also gets its own copies of the 𝛾-ton sources
in the scene. Hence, a grid of 10×10 statues has a scaling factor of 100 for the following
simulation properties:

• surfel count,
• emission count,
• triangle count,
• output texture count.

4. Evaluation 66

Figure 4.7: The largest variation of entity count stress tests, showing 10× 10 Napoleon
statues on pedestals.

By measuring the iteration times, the scalability of the approach to large scenes can be
evaluated. The resulting timings are depicted in a graph in figure 4.6. The variations up
to 50 entities (a 5×5 grid of two entities) with textures at resolution 1024×1024 or less
handle the workload reasonably well. Most space requirements can be met with physical
memory, and the running time grows relatively slowly. Performance becomes abysmal
for more entities or larger textures, with 𝑡min(1) exceeding one hour. The 8×8-variation
with 128 entities already used up all physical memory and swap space, and had to be
killed by the operating system while still preparing the simulation.

The numbers indicate adequate performance for small to medium-sized scenes. Ex-
tremely large scenes, are, as of now, infeasible for use with the implementation. Handling
these extremely large workloads seems to require at least a different approach of mem-
ory management to gracefully handle the enormous amounts of surfels and triangles. A
scheme for subdivision of the simulation in smaller units might be necessary to handle
the memory cost. Extremely large scenes further require a high number of generated
textures. This might make ahead-of-time generation of textures too expensive in terms
of disk space. When distributing an application with objects weathered by aitios, a
potential alternative to pre-calculating the textures would be to perform weathering
simulation just-in-time in the target application at runtime.

Limiting Factors: Propagation performance in classical 𝛾-ton tracing is said to depend
primarily on the number of 𝛾-tons emitted and on the number of surfels [4], which, when
the triangle count is also considered (relevant for intersection check performance), also
seems to be a sound analysis for the tracing time 𝑡𝛾 in the aitios variation. Regarding
the complete iteration time 𝑡(𝑛, 𝑚), the performance of scenes is primarily limited by
triangle count (Octree size and performance), surface area (surfel count, kD-tree), and
entity count (texture count). The most performance-sensitive parameters of the simula-
tion itself are the surfel distance, 𝛾-ton emission count, and the amount and resolution

4. Evaluation 67

of textures utilised or generated in the effect pipeline. It appears that the performance
is primarily limited by high memory requirements and by time-intensive intersection
checks in complex scenes. Much time is also spent on blocking I/O tasks. Significant
memory is required for triangles, surfels, live 𝛾-tons, textures currently required in mem-
ory and various acceleration data structures.

Related Techniques in Comparison

𝛾-ton tracing, in the presented variation, is capable of off-line simulation of corrosion,
taking into account exposure to weathering sources and differential flow. The perfor-
mance of generation will, where data is available, be compared with related techniques
in the following.

The authors of the original publication on 𝛾-ton tracing from 2005 published the
running times of the part of iterations spent on 𝛾-ton propagation (comparable to 𝑡𝛾 in
aitios). The following performance metrics have been measured on a PC with a 3 GHz
Pentium IV processor (32-bit, single-core) and were published by the researchers:

• An example with 100k surfels and 15k emitted 𝛾-tons is said to take approximately
one minute to trace per iteration.

• Another example of 100k surfels and 63k 𝛾-tons is said to take between 1.5 and 2
minutes to trace.

• For a scene of 200k surfels and 50k vertices, propagation of 10k 𝛾-tons, mesh
displacement and mesh retilement with the Turk method, takes a combined 3
minutes [4].

They make no claims about the performance of their appearance rendering technique
based on multi-texturing and 𝛾-ton map-guided blending [4], which would be an equiv-
alent to the texture synthesis running time 𝑡T. The classic technique is nonetheless
assumed to be more performant, since only one blending operation is required. The
presented blending approach in aitios requires two blending operations. One operation
blends between two neighbouring blend stops, and one applies the blending result on
top of the base material. Also, multiple blending layers may be stacked on top of each
other.

It may appear at first sight that the presented implementation has superior tracing
time 𝑡𝛾 , since one minute suffices for the tracing of vastly more 𝛾-tons in scenes with
more entities, each of greater complexity. Such a direct comparison of the metrics is
clearly not admissible. The evaluation hardware for the presented implementation is 13
years younger and provides 6 cores at a similar core frequency (3.6 GHz), instead of a
single one. The newer hardware can thus profit from parallelisation of the problem. Even
if the worker thread count was limited to one and the core frequency limited to 3GHz, a
faithful comparison is still impossible. Superior caching, speculative execution and other
modern processor optimisations would still set the two models apart. Apart from the
processor, all other hardware characteristics of the evaluation machine for the classical
performance metrics are unknown, particularly the RAM and HDD characteristics. It is
assumed that the single-threaded tracing performance would be similar when running on
the same hardware, since the techniques are closely related. However, no serious claim
can be made about relative performance for the lack of a reference implementation for
classical 𝛾-ton tracing.

4. Evaluation 68

While the original implementation appears to be CPU-based just like the presented
one, Günther, Rohmer and Grosch presented a GPU-based variation in 2012, which
is capable of running at interactive frame rates with the workloads presented in the
publication [12]. The general process differs in many aspects. A time step in the Günther
et al. variation cannot directly be compared to an iteration in aitios or an aspect of it. In
aitios, an iteration traces a 𝛾-ton to conclusion, with multiple substance transports for
each particle, while the approach by Günther is designed to be interactive and does not
terminate particles. Particles are usually in mid-air and will only sometimes collide with
geometry to exchange substances. As a result, only a fraction of the particles exchange
substances from one time step to the next. See section 2.4.4 for additional details on
the approach.

The authors of the approach captured performance data on a computer with an Intel
Core 2 Quad Q9650 CPU and an Nvidia GeForce GTX 560 Ti GPU with 3.5 GB VRAM
and 4GB RAM, with promising results. On this hardware, interactive framerates are
possible for all example scenes listed in the paper, using a single material atlas of size
1𝑘 × 1𝑘, with a complete time step taking between 16.93𝑚𝑠 and 18.04𝑚𝑠. The bulk of
this time is spent on texture composition (5.91𝑚𝑠 to 6.04𝑚𝑠) and preview rendering
(7.95𝑚𝑠 to 8.81𝑚𝑠) and not on tracing (2.72𝑚𝑠 to 2.93𝑚𝑠) and substance transport
(0.06𝑚𝑠 for both 𝛾-ton and surface updates) or ageing rules (0.25𝑚𝑠). At a texture atlas
size of 4𝑘 × 4𝑘, a complete time step drops to approximately 112𝑚𝑠 for all examples.
The authors see the main bottleneck in a high transfer rate during composition. The
approach is limited to a small number of objects, but opens new possibilities to its use,
such as interactive usage in gaming contexts [12].

The measured metrics do not have equivalents in the running times presented for
aitios. The composition step, which takes about one third of a time step in the GPU ap-
proach, comes close to the texture synthesis running time 𝑡T, though the latter includes
image export time to disk, masking the core task of texture synthesis. It can be said
though, that aitios is orders of magnitude away from running at interactive framerates
and providing instant feedback to the artist, while the GPU approach can handle the
task gracefully with moderate workloads.

Its CPU-based nature, on the other hand, gives aitios access to a large portion of the
main RAM of the computer and makes simulation with medium-sized scenes of at least
some dozens of objects feasible. The space complexity of the CPU variation, however, is
not actually lower. With large scenes of 50 or more objects, physical memory will likely
be insufficient for all surfels, triangles and the textures currently being operated on.
This leads to excessive swap space usage, rendering the application effectively unusable
due to extremely long iteration times. Particularly the employed optimisation of pre-
calculating surfel associations or position textures for all entities becomes a limiting
factor and would need to be disabled for large scenes.

Performance limitations may render the technique infeasible for scenes of vast di-
mensions. A variation of 𝛾-ton tracing by João explicitly targets arbitrarily complex
scenes, but imposes other limitations [1].

To ease future performance comparison with this concrete implementation, aitios
has built-in benchmarking functionality and is publicly developed on GitHub2. The

2https://github.com/krachzack/aitios-cli

https://github.com/krachzack/aitios-cli

4. Evaluation 69

presented simulations are available as simulation specification files with associated re-
sources on the accompanying CD.

4.4.3 Practical Applicability
Many corrosion effects can be effectively modelled using 𝛾-ton tracing in the shown vari-
ation. The resulting level of physical validity and runtime performance can be considered
acceptable for many use cases.

High-frequency details will often require either high-resolution and high-quality tex-
tures for blending, excessive processing power to calculate substance textures with very
fine-grained details, or even the use of a different appearance rendering technique instead
of the built-in blending, that is more suitable to fine-grained details. The appearance
manifold technique produces high-quality details [26] and might be a good fit for an
alternative appearance rendering technique.

Still, the technique lags behind hand-painting in some aspects. Especially in ex-
tremely small scenes with little potential for automation, the increased complexity of
configuring and running a simulation instead of hand-painting might not be justified.

Apart from runtime performance, it can be said that 𝛾-ton tracing-based weather-
ing simulation has a non-trivial cost during production due to time spent on simulation
preparation, specification, refinement, computation time itself (defined by runtime per-
formance of the algorithm and available hardware), as well as preparation of the resulting
output textures for shipping in the final product. The cost of the simulation itself can
grow extremely high for complex simulations, inhibiting experimentation and parameter
tweaking by the artist in some cases, or even failing to run to conclusion in the most
complex of simulations. Since the approach is purely phenomenological, parameters of
weathering effects can not be measured.

Summarizing the practical applicability of the aitios variation for corrosion effects,
adequate running times and visual results can be reached with small to medium-sized
scenes with up to 50 objects of moderate complexity (approximately 35k triangles each)
and simulation parameters set to typical values.

Chapter 5

Conclusion

With this work, a well-defined variation of 𝛾-ton tracing with associated texture synthe-
sis functionality has been presented and implemented in the form of the weathering tool
aitios. The resulting work has been evaluated and shown to be feasible for weathering
effects in scenery consisting of some dozens of entities.

The variation primarily built on ideas present in classical 𝛾-ton tracing, extending it
with ideas drawn from the existing body of work around 𝛾-ton tracing and some novel
aspects. The resulting concrete variation lends itself to future comparison, improvement,
extension and also re-implementation.

Algorithms for surfel-based texture synthesis including a conversion technique of sur-
fel maps to substance distribution textures, have been proposed, allowing for integration
of the technique with existing rendering pipelines and other tooling. As an alternative
to external appearance rendering based on the plain substance textures, the simplistic
blending-based technique that has been present in classical 𝛾-ton tracing was extended
to a layering-based approach. Instead of a direct blending of two textures, weathered
appearances can be defined as progressions of optionally transparent weathered tex-
ture samples that are layered on top of the base material of the affected object. Where
linear blending is not admissible, as is the case for normal maps, alternative blending
techniques have been proposed.

Some advantages of the surfel representation have been pointed out, such as their
resilience against texture discontinuities. However, when compared to a texture-based
representation of surface data, the computational and memory overhead associated with
surfels cannot be neglected, especially for scenes of large dimension. A purely texture-
based workflow might not only be more memory efficient, but also provide faster lookup
for near surfels. Such an approach is present in [12], and [7] also seem to store local
surface information in textures.

The presented approach provides an effective means of simulating a range of nat-
ural surface ageing effects without domain-specific knowledge. In the evaluation chap-
ter, applications in the context of corrosion effects have been presented and evaluated
for physical validity and runtime performance. Limitations of the technique have been
pointed out and contrasted with other techniques.

70

5. Conclusion 71

5.1 Limitations
The texture-based approach imposes some limitations on simulation geometry. These
limitations, along with possible solutions, shall be summarized at this point.

Entity Count: Captured performance metrics suggest that a patina simulation with
one iteration, 72 large entities and medium quality settings for 180 textures can be
simulated in thirty minutes. Iteration times below one minute, where tweaking and
experimentation by the artist is conveniently possible, are typically only possible for
less than ten objects in a scene and texture resolutions below 2048× 2048.

Surface Area: The space and time complexity of generation and lookup of surfels de-
pend primarily on the combined area of all entities in the scene. Furthermore, the
additional memory required to store a unique texture for every weathered object in
the scene might exceed the available memory budget, depending on the generated tex-
ture sizes and whether texture synthesis is performed just-in-time or ahead-of-time. For
highly complex and large scenes, running time of the algorithm or the combined space
requirements of generated textures might render use of the algorithm infeasible without
further optimisation.

Setup Cost: The 𝛾-ton tracing technique allows for adequate estimation of substance
distributions. One or more substances involved in different effects can be accounted for.
Designing an effect requires careful observation of natural phenomena as well as some
amount of experimentation and tweaking. Firstly, the main contributing substances have
to be identified. Their source and transport properties need to be determined. Once the
distribution of involved substances has been solved, designing the effect pipeline for
texture synthesis again requires manual labour. Not only 𝛾-ton emission needs to be
configured, but also material composition. For each relevant material in the scene (fall-
back materials are supported), the properties of generated surfels need to be configured.
Such properties include the 𝛾-reflectance of the surface, representing the roughness of
the surface, or the likeliness of stopping 𝛾-tons and having them settle. If only few
objects are affected by the weathering effects, manual design of the textures might ac-
tually be more efficient than deploying a simulation scheme. However, once substance
behaviour and effect pipeline of a 𝛾-ton tracing simulation have been designed, aspects
of an effect may turn out to be highly reusable and can frequently be used in other con-
texts and for different objects without modification. A library of pre-defined simulation
fragments might alleviate some of the configuration complexity.

UV Coordinates: The algorithm requires high-quality UV coordinates. In particular,
UV islands should have padding, such that island bleed will only bleed into unmapped
texture space. Furthermore, UV space cannot be shared by more than one triangle, since
that would make it impossible to uniquely assign a material concentration to a texel.
The point-based surfel representation of substance distribution data, in contrast, defines
three-dimensional positions and hence does not require UV mapping. At least for off-
line rendering, a potential workaround would be to defer the substance concentration
lookup to render time and perform a direct lookup into the surfel tree, performing the

5. Conclusion 72

weathering effect at the latest possible point. For GPU-based rendering at interactive
framerates, a texture-based approach currently seems most efficient. It should be noted,
however, that spatial data structures for use in shader programs are an active field of
research. The means for efficient lookup of nearest surfels in GPU contexts may already
be available, such that composition based on surfels might already be feasible at render
time.

5.2 Further Prospects
This is not the first publication extending upon the 𝛾-ton tracing approach, yet there
are still some specifics that would warrant additional research. These shall be outlined
in the following.

5.2.1 Scalability
The presented approach cannot handle arbitrarily complex scenes. Practical limits be-
come obvious when many objects play a part in 𝛾-ton tracing and texture synthesis.
Future work could tackle this problem. One candidate for large amounts of geometry
already exists in [1]. A new scheme for the handling of vast scenery would be especially
useful if the specific limitations of GPU-based variations, such as [12], which currently
exhibits similar scalability issues, were also considered.

5.2.2 Mechanical Phenomena
While phenomena that are directly attributable to the transport of substances can
reasonably well be simulated with the presented approach, these often cause secondary
effects that are not covered by the algorithm. For instance, painted metal protects metal
from corrosion and the same paint peeling off can kick off corrosion beneath the painted
surface in a separate layer, in turn causing more paint to peel off. For the problem
of local growth, classical 𝛾-ton tracing updates the reflectance properties via a user-
defined “simple function”, based on transport information after each iteration [4]. This
functionality, unimplemented in aitios as of yet, can be exploited to increase weathering
rates of already weathered areas. Kider shows promising work towards local growth in
his 𝜇-ton simulation framework. The particle-based approach explicitly handles diffusion
into materials and local growth of blemishes, providing support for mechanical crackling
and peeling [16].

5.2.3 Texture Synthesis
The synthesis functionality in aitios is based on the layering and blending of weathered
texture maps over original textures. While this ensures frame-to-frame consistency, it
can be limiting in some situations.

Projection Artefacts: The texture maps used for blending over originals are often not
made for the specific geometry of the affected model, as this would pose substantial
overhead for a scene with many objects. Rather, a specific substance is usually tied to one
weathered texture progression shared by multiple objects to reduce production overhead.

5. Conclusion 73

The weathered texture thus cannot take seams in UV maps of affected objects into
account, leading to artefacts at texture discontinuities. A pattern might seem awkwardly
cut off or rotated when crossing a texture seam, making the texture appear synthetic.
While it would be entirely possible to provide a tailored weathered texture for each
affected object, doing so would require substantial human labour. Algorithms exist for
the problem of adapting textures to different geometry without human intervention.
These include the Image Welding approach [25], which would allow for the application
of tiles of a single input texture directly onto surfaces of objects. The process would
allow for the synthesis of entity-specific weathering blend stops, tailored to the objects
UV map and geometry. This texture could again be used for simple blending operations
to retain the property of frame-to-frame consistency.

Another potential problem arises with non-uniform texel-to-world-scales. The map-
ping of triangles on the surface of an object to UV space might exhibit non-uniform scales
for technical reasons. Triangles are usually grouped with neighbouring triangles and
projected into flat UV space, mostly resulting in some distortion. The non-uniformity
can also occur on purpose, when some regions should have additional detail in texture
painting, for instance the face on a humanoid model. Further, an instanced object might
appear multiple times but in different sizes in the scene, making the texel-to-world-scale
between objects different. Distinct objects with different geometries and texture maps
might also exhibit inconsistent texel to world scales with respect to each other. This
inconsistency arising from the stated reasons results in differently scaled weathering
patterns both among objects and throughout the surface of a single object, if the same
texture is applied during blending and the texture is not adapted to projection and scal-
ing. If, as suggested before, custom made weathering textures are applied, a possible
non-uniformity in texel-to-world-scale should be taken into account.

Visual Quality: Implementing Time-varying Weathering In Texture Space as proposed
by Bellini and others [2] would allow for blemishes to gradually appear instead of blend-
ing in, without domain-specific knowledge about the weathering effect. This would pre-
sumably make blemish development more convincing with highly stochastic textures,
such as cracking patterns. The work would allow for the generation of a weathered tex-
ture progression based on a single texture sample, instead of manually preparing the
blend stops to aitios.

Appendix A

DVD Contents

The accompanying DVD contains supplementary data to the thesis, including:
• Source code of the implementation used for evaluation,
• simulation specification for the implemented simulation software,
• renderings using simulation results,
• 3D software data files used for rendering,
• a script for re-evaluation of performance.

A.1 Root Directory
Path: /

README.md Contents of this appendix in Markdown format
thesis.pdf Digital copy of this document
online/ Copies of online resources as referenced in the

bibliography, accessed 2018-09-13

A.2 Binaries
Path: /bin

linux ELF binaries for aitios and litter, pre-compiled for 64-bit
Linux with glibc

mac Mach-O binaries for aitios and litter, pre-compiled for
Mac OS X

windows Binaries for aitios and litter, pre-compiled for Windows
systems

RUNNING.md Instructions on using the binaries and running the shown
simulations

74

A. DVD Contents 75

A.3 Source Code
Path: /src

aitios.zip Compressed snapshot of the source code of aitios, split
among various sub-projects

litter.zip Compressed snapshot of the source code of litter, used
for performance evaluation

A.4 Evaluation Hardware Specifications
Path: /hardwarespecs

_SUMMARY.md Human-readable hardware specifications, as summarized
by the author

hwinfo_long.txt Full output of the hwinfo tool on the evaluation
machine running Arch Linux

hwinfo.txt Shortened output of the hwinfo tool on the evaluation
machine running Arch Linux

pci.txt lspci output on the evaluation machine running Arch
Linux

A.5 Simulations
Path: /simulations

data Measured performance metrics as *.data files, suitable
for use with pgfplots

effects Specifications for the effect pipelines of the rust and
patina evaluations

generated Automatically generated complex versions of the top
level simulations, with results, as well as results of the
unmodified simulations, used for rendering

latex Automatically generated tables for renderings and
performance metrics as included into the thesis

render Blender files used for the renderings in the thesis
run Supporting files for the automatic simulating, rendering,

stress testing and templating for the thesis
scenes Simulation scenes in OBJ/MTL format, having a clean

post-manufacturing state
simulations Metadata and basic configuration of simulations
sources Emission shapes in OBJ format and 𝛾-ton source

specifications
surfels Surfel specifications for iron, copper and stone
templates Templates for rendering and stress test tables

A. DVD Contents 76

latest-patina-stresstest-timings.yaml Latest results of stress tests on the patina
simulation in YAML format

latest-rust-stresstest-timings.yaml Latest results of stress tests on the patina
simulation in YAML format

run.rb Script for simulating, rendering, performance evaluation
and snippet building

References

Literature

[1] João Montenegro Almeida. “Particle Driven Weathering System”. MA thesis.
Bournemouth, UK: Bournemouth University, National Centre for Computer An-
imation, Sept. 2007 (cit. on pp. 17, 68, 72).

[2] Rachele Bellini, Yanir Kleiman, and Daniel Cohen-Or. “Time-varying Weathering
in Texture Space”. ACM Transactions on Graphics 35.4 (2016), 141:1–141:11 (cit.
on pp. 4, 14, 15, 63, 73).

[3] Carles Bosch et al. “Image-guided Weathering: A New Approach Applied to Flow
Phenomena”. ACM Transactions on Graphics 30.3 (2011), 20:1–20:13 (cit. on
p. 4).

[4] Yanyun Chen et al. “Visual Simulation of Weathering By Gamma-ton Tracing”.
ACM Transactions on Graphics 24.3 (2005), pp. 1127–1133 (cit. on pp. 4, 5, 14–
17, 21, 22, 24, 25, 28, 29, 31–34, 36, 43, 45, 54, 66, 67, 72).

[5] David Cline et al. “Dart Throwing on Surfaces”. Computer Graphics Forum 28.4
(2009), pp. 1217–1226 (cit. on pp. 26, 27).

[6] Julie Dorsey and Pat Hanrahan. “Modeling and Rendering of Metallic Patinas”.
In: Proceedings of the 23rd Annual Conference on Computer Graphics and Inter-
active Techniques (New Orleans, Louisiana, USA). Ed. by John Fuji. New York,
New York, USA: ACM, Aug. 1996, pp. 387–396 (cit. on pp. 4, 7–9, 53, 62).

[7] Julie Dorsey, Hans Køhling Pedersen, and Pat Hanrahan. “Flow and Changes in
Appearance”. In: Proceedings of the 23rd Annual Conference on Computer Graph-
ics and Interactive Techniques (New Orleans, Louisiana, USA). Ed. by John Fuji.
New York, New York, USA: ACM, Aug. 1996, pp. 411–420 (cit. on pp. 7, 9–11,
17, 28, 32, 51, 54, 62, 70).

[8] Alexei A. Efros and William T. Freeman. “Image Quilting for Texture Synthe-
sis and Transfer”. In: Proceedings of the 28th Annual Conference on Computer
Graphics and Interactive Techniques (Los Angeles, California, USA). Ed. by Eu-
gene Fiume. New York, New York, USA: ACM, Aug. 2001, pp. 341–346 (cit. on
p. 12).

[9] Dhana Frerichs, Andrew Vidler, and Christos Gatzidis. “A Survey on Object De-
formation and Decomposition in Computer Graphics”. Computers & Graphics
52.C (2015), pp. 18–32 (cit. on pp. 5–7, 16, 51, 53).

77

References 78

[10] Dhana Frerichs, Andrew Vidler, and Christos Gatzidis. “Object Weathering Sim-
ulation Avoiding Texture Space Stretching and Discontinuities”. In: Proceedings of
the International Conference on Computer Graphics and Interactive Techniques
(Shenzhen, China). New York, New York, USA: ACM, Dec. 2014, 37:1–37:1 (cit.
on pp. 20, 43).

[11] Stéphane Gobron and Norishige Chiba. “Crack Pattern Simulation Based on 3D
Surface Cellular Automaton”. In: Proceedings of the International Conference on
Computer Graphics (Geneva, Switzerland). Washington, DC, USA: IEEE Com-
puter Society, June 2000, pp. 153–162 (cit. on p. 7).

[12] Tobias Günther, Kai Rohmer, and Thorsten Grosch. “GPU-accelerated Interactive
Material Aging”. In: Proceedings of the 17th International Workshop on Vision,
Modeling and Visualization (Magdeburg, Germany). Ed. by Michael Gösele et
al. Geneva, Switzerland: Eurographics Association, Nov. 2012, pp. 63–70 (cit. on
pp. 19–21, 28, 31, 32, 43, 68, 70, 72).

[13] Henrik Wann Jensen and Niels Jørgen Christensen. “Photon maps in bidirectional
Monte Carlo ray tracing of complex objects”. Computers & Graphics 19.2 (1995),
pp. 215–224 (cit. on p. 17).

[14] Shaohui Jiao, Gang Yang, and Enhua Wu. “Weathering fur simulation”. In: Pro-
ceedings of the 16th ACM Symposium on Virtual Reality Software and Technology
(Kyoto, Japan). Ed. by Steven N. Spencer. New York, New York, USA: ACM,
Nov. 2009, pp. 271–272 (cit. on p. 17).

[15] Z. Jiayin and Z. Mingquan. “Improved Gammaton Tracing Technique Using
Height Field Profile Tracing”. In: Proceedings of the 38th Annual Conference
on Computer Applications and Quantitative Methods in Archaeology (Granada,
Spain). Ed. by Mercedes Farjas Contreras Francisco and Francisco Javier Melero.
Oxford, UK: Archaeopress, Apr. 2010, pp. 63–70 (cit. on p. 17).

[16] Joseph T. Kider. “Simulation of 3D Model, Shape, and Appearance Aging by
Physical, Chemical, Biological, Environmental, and Weathering Effects”. PhD the-
sis. Philadelphia, USA: University of Pennsylvania, 2012 (cit. on pp. 7, 12, 17–19,
72).

[17] Joseph T. Kider, Samantha Raja, and Norman I. Badler. “Fruit Senescence and
Decay Simulation”. Computer Graphics Forum 30.2 (2011), pp. 257–266 (cit. on
pp. 4, 7, 36).

[18] Jianye Lu et al. “Context-aware Textures”. ACM Transactions on Graphics 26.1
(2007), 3:1–3:22 (cit. on pp. 5, 6, 13, 14, 36).

[19] Stéphane Mérillou and Djamchid Ghazanfarpour. “A Survey of Aging and Weath-
ering Phenomena in Computer Graphics”. Computers & Graphics 32.2 (2008),
pp. 159–174 (cit. on pp. 5, 6).

[20] Peter Mileff, Károly Nehéz, and Judit Dudra. “Accelerated Half-Space Triangle
Rasterization”. Acta Polytechnica Hungarica 12.7 (Dec. 2015), pp. 217–236 (cit.
on p. 38).

References 79

[21] Gavin Miller. “Efficient Algorithms for Local and Global Accessibility Shading”.
In: Proceedings of the 21st Annual Conference on Computer Graphics and Inter-
active Techniques. New York, New York, USA: ACM, 1994, pp. 319–326 (cit. on
p. 8).

[22] Tomas Möller and Ben Trumbore. “Fast, Minimum Storage Ray-triangle Intersec-
tion”. Journal of Graphics Tools 2.1 (1997), pp. 21–28 (cit. on p. 29).

[23] Robert Osada et al. “Shape Distributions”. ACM Transactions on Graphics 21.4
(2002), pp. 807–832 (cit. on p. 25).

[24] Hanspeter Pfister et al. “Surfels: Surface Elements As Rendering Primitives”. In:
Proceedings of the 27th Annual Conference on Computer Graphics and Interactive
Techniques (New Orleans, Louisiana, USA). New York, New York, USA: ACM,
July 2000, pp. 335–342 (cit. on pp. 22, 25).

[25] Muath Sabha and Philip Dutré. “Image Welding for Texture Synthesis”. In: Pro-
ceedings on Vision, Modeling, and Visualization (Aachen, Germany). Ed. by L.
Kobbelt et al. Berlin, Germany: Akademische Verlagsgesellschaft Aka GmbH, Nov.
2006, pp. 97–104 (cit. on p. 73).

[26] Jiaping Wang et al. “Appearance Manifolds for Modeling Time-Variant Appear-
ance of Materials”. ACM Transactions on Graphics 25.3 (2006), pp. 754–761 (cit.
on pp. 4, 12, 13, 15, 62, 69).

[27] Su Xuey et al. “Image-based Material Weathering”. Computer Graphics Forum
27.2 (2008), pp. 617–626 (cit. on pp. 12, 13).

Online sources

[28] Joki 3D. Old rusty horror sink. Model of a rusty sink with handpainted rust
textures, licenced Turbosquid Royalty Free License, All Extended Uses. Dec. 2016.
url: https://www.turbosquid.com/FullPreview/Index.cfm/ID/1105321 (visited on
08/19/2018) (cit. on p. 52).

[29] Colin Barré-Brisebois and Stephen Hill. Blending in Detail. Blog post, comparison
of normal blending techniques. July 2012. url: https://blog.selfshadow.com/publi
cations/blending-in-detail/ (visited on 07/09/2018) (cit. on pp. 40, 41).

[30] Benjah-bmm27. Sample of iron(III) oxide. May 2007. url: https ://en.wikiped
ia .org/wiki/ Iron(III)_oxide#/media/File : Iron(III) - oxide- sample . jpg (visited on
09/19/2018) (cit. on p. 52).

[31] Joaquim Alves Gaspar. Equestrian statue of King D. José. Praça do Comércio,
Lisboa, Portugal. Image of a copper statue recently cleaned of patina, Wikimedia
Commons, Licensed CC BY-SA 3.0. 2015. url: https://en.wikipedia.org/wiki/File
:Lisboa_January_2015-22.jpg (visited on 06/26/2018) (cit. on p. 53).

[32] Joaquim Alves Gaspar. The statue of D. José I, Lisboa, Portugal. Image of patina
on a copper statue, Wikimedia Commons, Licensed CC BY-SA 3.0. 2011. url: ht
tps://commons.wikimedia.org/wiki/File:Lisboa_November_2011-13.jpg (visited on
06/26/2018) (cit. on p. 53).

https://www.turbosquid.com/FullPreview/Index.cfm/ID/1105321
https://blog.selfshadow.com/publications/blending-in-detail/
https://blog.selfshadow.com/publications/blending-in-detail/
https://en.wikipedia.org/wiki/Iron(III)_oxide#/media/File:Iron(III)-oxide-sample.jpg
https://en.wikipedia.org/wiki/Iron(III)_oxide#/media/File:Iron(III)-oxide-sample.jpg
https://en.wikipedia.org/wiki/File:Lisboa_January_2015-22.jpg
https://en.wikipedia.org/wiki/File:Lisboa_January_2015-22.jpg
https://commons.wikimedia.org/wiki/File:Lisboa_November_2011-13.jpg
https://commons.wikimedia.org/wiki/File:Lisboa_November_2011-13.jpg

References 80

[33] haridon. 3D Rusty helicopter. Model of a fantasy helicopter, with handpainted
rusting textures, licenced Turbosquid Royalty Free License, All Extended Uses.
Apr. 2017. url: https://www.turbosquid.com/FullPreview/Index.cfm/ID/1143883
(visited on 08/19/2018) (cit. on p. 52).

[34] mali maeder. Untitled. Photograph of corroded iron bars. June 2016. url: https
://www.pexels.com/photo/abandoned-daylight-decay-destroyed-241523/ (visited
on 09/19/2018) (cit. on p. 52).

[35] Marlith. File:RustyChainEdit1.jpg. Surface breakdown, cracking and flaking in
a photograph of a rusting chain, licensed Creative Commons Attribution-Share
Alike 3.0 Unported. Nov. 2008. url: https://en.wikipedia.org/wiki/File:RustyChai
nEdit1.jpg (visited on 07/09/2018) (cit. on p. 52).

[36] Loïc Norgeot. Equestrian statue of Napoleon. Simplified, UV-unwrapped and re-
textured version of a 3D Scan of a copper statue, licensed CC BY 4.0. 2017. url:
https : // sketchfab . com/models /ad3fe0536f4f40c5a2de5b5649b2e639 (visited on
06/28/2018) (cit. on pp. 53, 54).

[37] IMA Solutions. Napoleon. 3D Scan of a copper statue on Champs-Élysées, Paris,
Scanned by IMA Solutions for Musée de la Révolution française. 2017. url: htt
ps://www.artec3d.com/de/3d-models/napoleon (visited on 06/27/2018) (cit. on
pp. 53, 54).

https://www.turbosquid.com/FullPreview/Index.cfm/ID/1143883
https://www.pexels.com/photo/abandoned-daylight-decay-destroyed-241523/
https://www.pexels.com/photo/abandoned-daylight-decay-destroyed-241523/
https://en.wikipedia.org/wiki/File:RustyChainEdit1.jpg
https://en.wikipedia.org/wiki/File:RustyChainEdit1.jpg
https://sketchfab.com/models/ad3fe0536f4f40c5a2de5b5649b2e639
https://www.artec3d.com/de/3d-models/napoleon
https://www.artec3d.com/de/3d-models/napoleon

Check Final Print Size

— Check final print size! —

width = 100mm
height = 50mm

— Remove this page after printing! —

81

	Declaration
	Preface
	Abstract
	Kurzfassung
	Introduction
	Motivation
	Aims
	Overview

	Related Work
	Weathering Classification
	Attack Classes
	Chemical Attacks
	Biological Attacks
	Mechanical Attacks

	Physically-Based Simulations
	Metallic Patinas
	Flow

	Transfer Techniques
	Appearance Manifolds
	Context-Aware Textures

	Phenomenological Models
	Weathering in Texture Space
	Gammaton Tracing
	Muton Simulation
	Interactive Gammaton Tracing

	Implementation
	Overview
	Requirements
	Architecture
	Organisation

	Surface Model
	Surface Sampling

	Particle Model
	Tracing
	State Transitions
	Intersection Tests

	Interaction
	Motion Deterioration
	Substance Transport
	Ageing Rules

	Texture Synthesis
	Position Texture
	Surfel Association Texture
	Substance Texture
	Appearance Rendering
	Texture Irregularities Compensation

	Optimizations
	Parallelism
	Spatial Data Structures

	Evaluation
	Methodology
	Physical Validity
	Runtime Performance

	Corrosion
	Patterns

	Simulation Design
	Scene
	Emission
	Material Properties
	Interaction
	Ageing Rules
	Effect Setup

	Results
	Physical Validity
	Runtime Performance
	Practical Applicability

	Conclusion
	Limitations
	Further Prospects
	Scalability
	Mechanical Phenomena
	Texture Synthesis

	DVD Contents
	Root Directory
	Binaries
	Source Code
	Evaluation Hardware Specifications
	Simulations

	References
	Literature
	Online sources

