
Tracking and Communication of Devices in
Shared Augmented Reality Experiences

Michael Staudinger

M A S T E R A R B E I T
eingereicht am

Fachhochschul-Masterstudiengang

Interactive Media

in Hagenberg

im September 2018

© Copyright 2018 Michael Staudinger

This work is published under the conditions of the Creative Commons License Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)—see https://
creativecommons.org/licenses/by-nc-nd/4.0/.

ii

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Declaration

I hereby declare and confirm that this thesis is entirely the result of my own original
work. Where other sources of information have been used, they have been indicated
as such and properly acknowledged. I further declare that this or similar work has not
been submitted for credit elsewhere.

Hagenberg, September 24, 2018

Michael Staudinger

iii

Contents

Declaration iii

Preface vi

Abstract vii

Kurzfassung viii

1 Introduction 1

2 Mixed Reality Technologies 3
2.1 Mixed, Virtual and Augmented Reality or Virtuality? 3
2.2 Evolution of Augmented Reality . 3

2.2.1 3D Augmented Reality in Own Hands 4
2.2.2 Standalone Device for our Heads 4
2.2.3 Computer Vision Knowledge for Better Accessibility 5

2.3 Shared and Isolated Experiences . 6
2.3.1 System-internal Synchronization 6
2.3.2 Isolated Experience . 6

2.4 Multi-Platform AR Experiences as a Solution for Isolated Experiences . 7

3 Red Bull Air Race Holo-Info 8
3.1 About Red Bull Air Races . 8
3.2 Presentation and Course of Action . 9
3.3 Instruction and Possible Manipulations 9
3.4 Augmented Reality Interfaces . 10
3.5 GuidePin and PilotPin . 11
3.6 Pin-Managers . 12

4 Communication 13
4.1 Workload distribution . 13
4.2 Roles . 13

4.2.1 Server . 14
4.2.2 Controller . 15
4.2.3 Instructor . 15
4.2.4 Spectator . 15

iv

Contents v

4.3 Networking in Unity . 15
4.3.1 Multiplayer Optimization in Unity 5 15
4.3.2 Using the Legacy Networking . 16

4.4 Network Procedure . 16
4.4.1 Brief Overview . 16
4.4.2 Direct Connection Messages . 18
4.4.3 Role Messages . 18
4.4.4 Device Transformation and Timeout 19
4.4.5 Changes of the Application . 20

4.5 Implementation . 20
4.5.1 Messages . 20
4.5.2 Roles . 21
4.5.3 Outsourcing Permissions . 22
4.5.4 Server Functionality . 23
4.5.5 Client Functionality . 30

5 Spatial References 36
5.1 Requirements and Options . 36

5.1.1 Absolute and Relative Tracking 36
5.1.2 Static and Dynamic Mapping . 37
5.1.3 Referencing . 39

5.2 Concept . 41
5.3 Implementation . 42

5.3.1 Vuforia on the HoloLens . 42
5.3.2 ARCore . 46

6 Evaluation 49
6.1 Network Communication . 49

6.1.1 Closed Network . 49
6.1.2 Open Network . 50
6.1.3 Synchronization Exceptions . 51
6.1.4 Further Interesting Evaluations 52

6.2 Spatial Evaluation . 53
6.2.1 Tracking Stability on Movement 53
6.2.2 Image Recognition . 54
6.2.3 Space Synchronization . 57

7 Closing Remarks 59

A Technical Details 60

B DVD Contents 61

References 63
Literature . 63
Online sources . 63

Preface

This thesis was written for the successful graduation with the master’s degree in Science
in Engineering within the course Interactive Media at the University of Applied Sciences
Upper Austria in Hagenberg im Mühlkreis. The research, development for a use-case, as
well as the writing started in October 2017 and ended with the submission in September
2018.

I would like to thank my supervisor, Jeremiah Diephuis BA MA, for guidance and
support during the process and in general the professors of the University of Applied
Sciences Upper Austria at Campus Hagenberg im Mühlkreis, which led me through my
studies and shared important knowledge. Further thanks go to my friends and family,
which kept me motivated for going this far in my education.

I hope you enjoy your reading.

Hagenberg, September 24, 2018

Michael Staudinger, BSc

vi

Abstract

Augmented Reality which allows extending the real surroundings with virtual objects
was improved a lot in the last few years. Everyday devices are already able to interpret
real objects using sensors, visual data and Computer Vision algorithms. Other embedded
sensors such as gyroscopes and accelerometers are used to track the devices in 3D space,
allowing to merge the data of the surroundings with virtual data creating the illusion
of legitimate holograms.

Shared Experiences which offer multiple users at the same time and same space or
in different parts of the world to experience Augmented Reality applications together,
are supported by most developers of Augmented Reality systems but limited to users of
the same platform. This makes, for instance, the use and supervision of the Microsoft
HoloLens (wearable smart glasses with a superior experience) very expensive since mul-
tiple HoloLenses are required. The creation of a system which synchronizes the status
of a holographic application in space and time platform-independently would allow a
more cost-effective way to supervise users of the HoloLens and furthermore support
cross-platform Shared Experiences.

This thesis should describe the creation process of a cross-platform Shared AR Ex-
perience using the Microsoft HoloLens and ARCore, describe and discuss the methods
used and evaluate a test-case for the system, giving more insight in the possibilities of
closing the gaps between different Augmented Reality solutions.

vii

Kurzfassung

Augmented Reality erweitert die reale Umgebung mit virtuellen Objekten. Durch die
Forschung der letzten Jahre ist es bereits möglich auf tagtäglichen Geräten Objekte
durch Sensoren, visuelle Daten und Computer Vision Algorithmen zu erkennen. Weitere
Sensoren wie Gyroskope und Beschleunigungssensoren werden verwendet um das Gerät
im drei-dimensionalen Raum zu tracken, das es in Verbindung mit den virtuellen Daten
der Umgebung möglich macht Hologramme realistisch darzustellen.

Shared Experiences erlauben es mehreren Personen mit mehreren Geräten zur selben
Zeit und am selben Ort oder an verschiedenen Orten der Welt Augmented Reality An-
wendungen gemeinsam zu erleben. Shared Experiences sind mit den meisten Systemen
bereits möglich, aber auf die Plattform limitiert. Dies macht eine Verwendung der Mi-
crosoft HoloLens (tragbare Smart-Brille) sehr kostspielig, da mehrere HoloLenses benö-
tigt sind. Die Erstellung eines Systems, das den Status einer AR Anwendung in Raum
und Zeit plattform-unabhängig synchronisieren könnte, würde eine kosten-effizientere
Lösung für die Unterstützung eines HoloLens-Benutzers und weiters Cross-Platform
Shared Experiences ermöglichen.

Diese Arbeit soll sich mit der Erstellung eines Systems für Cross-Platform Shared
Experiences in Augmented Reality für die Microsoft HoloLens und ARCore befassen
und eine Test-Anwendung für das System evaluieren.

viii

Chapter 1

Introduction

Augmented Reality (AR) and its new way of presenting information is getting more
accessible and useable every day. Especially smartphone AR systems like ARCore by
Google and ARKit by Apple are already available on all new Android and Apple devices.
Not only are the costs of such devices decreasing, but furthermore the companies invest a
lot of research into their systems to make them more stable and more powerful. Not only
is the access to a supporting device probably granted, but the community has already
created hundreds of ARCore and ARKit applications for a very promising future of
Augmented Reality in our pockets.

These smartphone systems offer device tracking and therefore a three-dimensional
AR experience in which the users can run around freely, only limited by real boundaries
in their environment, but the systems lack real interactions with objects of the real world.
Object recognition is barely possible, even with more advanced mapping techniques as
for instance the Microsoft HoloLens uses. Still, ARCore and ARKit can identify flat
planes such as the floor and walls, sometimes even the shape of a staircase, which can
be used for surface related placement.

Furthermore, many AR frameworks including the smartphone’s can detect for in-
stance printed images in the three-dimensional space if they have enough information
about them given as a database. So not only flat surfaces can be referenced, but using
the image recognition the position can be defined more precisely and – most importantly
– controlled by the user by simply moving cards with tracking markers around.

Google’s ARCore and Apple’s ARKit offer many features that can be already used
by developers to already build applications for augmenting the real surroundings, even
though cross-references between reality-virtuality are barely possible now. The systems
offer as well platform-dependent networking features which allow synchronized content
across the globe.

In addition to these systems, the Microsoft HoloLens – head-mounted AR smart
glasses – are becoming more popular in exhibitions because of its far superior reality
mapping which is not just limited by flat surfaces, but even more complicated shapes are
at least roughly detectable and understandable. Companies like CurvSurf are already
quite successful in detecting desired objects with their software Find Surface which
opens up more reality-specific tasks the HoloLens could assist at (see figure 1.1).

Creating prototypes or full applications specialized for the Microsoft HoloLens are

1

1. Introduction 2

Figure 1.1: CurvSurf’s Find Surface algorithm uses the sensors of Microsoft’s HoloLens
to detect and track 3D objects. AR applications which are reacting accordingly to the
real environment’s geometries are not currently possible on smartphone frameworks such
as ARCore [7].

hardly observable though. If the user is not familiar with the new interaction methods,
such as selecting with a certain finger gesture and controlling with the gaze, the user
might be lost in the application and there is no instructor able to help in real-time since
technical limitations.

Using network functions for observing and sharing an AR experience is possible, but
limited to the same platform which is – as already mentioned – a high price-point for
buying another HoloLens for this reason and needs additional work to add this shared
aspect.

The goal of this Master’s thesis is to implement a system into a use-case which
allows joining a HoloLens session with an ARCore supported device. The applications
should run synchronized in time – there are multiple states of the application and the
hologram should be on every device in the same state – and space – the hologram should
be placed on a table and all connected devices should display the hologram at the same
spot.

For this approach, an optimized network procedure and both a geometric detection
as well as a visual detection in the form of using image recognition will be evaluated.

Chapter 2

Mixed Reality Technologies

2.1 Mixed, Virtual and Augmented Reality or Virtuality?
With technologies that can either let virtual objects become reality or use data of the
reality in virtual surroundings, many companies came up with different names to define
the class of their device which processes and visualizes both real and virtual information.

Paul Milgram and Fumio Kishino introduced the reality-virtuality continuum [2]
which tries to define which characteristics are essential for different types of reality and
virtuality and how the real surrounding and the virtual objects can relate to each other.

Mixed Reality (MR) is used to describe any technology which is both using the real
environment and the virtual world as a combination. No matter if the real world gets
augmented with virtual objects using Augmented Reality (AR) or interpreting the real
world and use this information in virtual worlds called Augmented Virtuality (AV) or
anything in between. Since this year, the new term Extended Reality (XR) is used as a
collection for any VR or MR technology [5].

Augmented Reality (AR) is the extension of the real environment using virtual ob-
jects which can act as if they were real. Unlike Virtual Reality (VR) in which the user
dives into a visualization of a virtual world without any connection to the real world,
using Augmented Reality systems makes it possible to expand the surroundings in a
useful manner.

While the virtual environment in Virtual Reality is basically just a collection of
data-sets, to offer an understandable behavior of holograms (virtual objects augmenting
the real world) is highly dependent on the real environment which is not just accessible
data in the memory. The environment has to be interpreted using mapping technologies
and the device’s position and orientation has to be tracked as well. This problem is
related to achievements in Computer Vision.

2.2 Evolution of Augmented Reality
Since the first possibilities of Augmented Reality were shown, more and more compa-
nies have been working on making Augmented Reality accessible and worth using for
the general public. Smaller companies started making augmented objects interesting for
possible audiences.

3

2. Mixed Reality Technologies 4

2.2.1 3D Augmented Reality in Own Hands
A big change of the possibilities what Augmented Reality could be like one day was
drastically changed by Google with Project Tango [10] in 2014.

Project Tango was unlike the earlier implementation which used visual markers to,
for example, augment pages of magazines, but was able to perceive the world as it
is; three-dimensional. This was achieved by embedding specialized hardware in Tango-
enabled smart devices (see figure 2.1). In addition to empowered CPU solutions, a wide
variety of sensors were used: The necessary kit included a wide-angle fish-eye camera, a
high-resolution RGB-camera and depth sensors in combination with improved gyroscope
and a fast-responding accelerometer.

Although Project Tango was highly supported by experts in Computer Vision and
even facilities such as the National Aeronautics and Space Administration (NASA) which
helped in testing and some of them as well in further development of the system, Tango
was barely adopted by smartphone manufacturers due to the higher costs of embed-
ding the additional sensors. Furthermore, due to the lack of handy applications, barely
any potential user was convinced to pay more for a functionality of a device which
was perceived more like a gimmick than an actual life-changer. Beside their internal
testing devices, two Tango devices were released by Google and two further devices by
the partners Lenovo and Asus with – as already mentioned – a smaller success than
anticipated.

2.2.2 Standalone Device for our Heads
Officially since early 2016, Microsoft joined the development of Augmented Reality
devices with the Microsoft HoloLens, formerly known as Project Baraboo [11]. Unlike
Project Tango by Google, Microsoft did not focus on turning everyday devices into
Augmented Reality devices but made wearable smart glasses with the only purpose of
augmenting objects into the real world. The HoloLens projects the holograms onto the
glasses, while the real world is just seen through the transparent glasses as the wearer
would without them. Just as Tango, the HoloLens is able to perceive the real world in all
three dimensions by using multiple cameras, depth sensors and other modules used for
estimation the own position and the data of the surroundings [15]. While Tango works
like a framework within Android applications, the HoloLens is a standalone device,
so everything offered works in Augmented Reality only with a holographic version of
Windows 10 and hardware optimized for tracking and mapping.

From the moment the HoloLens is started and is tracking the real world, it knows its
position, orientation and the relation to the real surroundings and uses this information
for every application installed. The HoloLens supports two types of applications: 2D
applications running in a frame which can be freely positioned in the environment (e.g.
stick it like a wallpaper onto the wall) and 3D applications which’s frame acts as a
launcher to dive into the three-dimensional application.

Although the use of gestures to control the HoloLens is unusual in the beginning
compared to interactions such as using a mouse or a touchscreen, after a little use it
feels much more natural to reach into the augmented environment and interact with
the virtual objects with bare hands. Further, it offers more precision than a touchscreen
in case of three-dimensional transformation manipulation. The HoloLens seems quite

2. Mixed Reality Technologies 5

Figure 2.1: Devices which support Project Tango, such as the shown Asus ZenFone
AR, require a wide variety of visual and emitting sensors to gather enough data of the
three-dimensional surrounding [6].

promising for daily use since it is not occupying the hands like holding a smartphone and
offers a superior precision and stability of tracking, mapping and interactions, but for
now, the technology is not accessible since the costs for it, and its knowledge included,
are very high, but understandable.

2.2.3 Computer Vision Knowledge for Better Accessibility
The most accessible systems existing right now are still growing in functionality and
stability. ARCore by Google [9] and ARKit by Apple are going back to the idea of the
first successful Augmented Reality solution and use devices which are already used on
a daily basis in our lives: smartphones.

Computing power as well as knowledge in Computer Vision improved drastically
over the last few years which allows for a new way to handle the interpretation of the
real surrounding without any additional hardware. Accelerometers and gyroscopes are
now the standard sensors embedded in the latest smartphone generation and have now
a higher precision in understanding position and movement of the devices. Furthermore,
cameras built into smartphones improved a lot in terms of resolution, lighting situation
and latency.

These improvements are what ARCore and ARKit rely on. Systematically, both sys-
tems work with the interpretation of movement and positioning using the accelerometer
and gyroscope and try to interpret the surroundings using the camera data in Computer
Vision techniques [8]. By doing this, the systems are able to detect rather simple refer-
ences in the world which are additionally used to again improve tracking the device’s
position and orientation in the semi-virtual space.

By having those references and further scanning and interpreting the surrounding,

2. Mixed Reality Technologies 6

the systems are able to process the 2D images of the camera and the data of the sensors
in a way the system can keep track of 3D information in both the real world and the
created virtual objects.

For now, both ARCore and ARKit are able to detect flat big surfaces like the floor
and – since the latest updates – walls and offers image recognition (see figure 2.2). These
references can be used to place augmented objects along those surfaces or anywhere in
3D space in relation to them. A problem using this method is the camera blur when
moving fast: Without enough detail, the systems are not able to identify reference points
anymore which could lead to a temporary loss of mapping information needed to achieve
a stable 3D environment, but in reasonable walking or viewing motions the tracking is
steady and surprisingly precise.

This technique cannot be used for static spectating since just one and the same
2D image input is not enough to understand a 3D surrounding without any movement.
Another problem for ARCore and ARKit are untextured and/or reflecting surfaces since
there is no possibility to receive reliant reference points. Even within a fully tracked
environment, going up close to a surface without any reference features can lead to a
complete loss of mapping and tracking until the system recognizes an already mapped
reference again.

2.3 Shared and Isolated Experiences
The term Shared Experiences will be used for describing how multiple users can see
and interact with the same augmented objects in a synchronized manner with one or
multiple devices, either in the same physical space or via networking in different parts
of the world.

2.3.1 System-internal Synchronization
Both the Microsoft HoloLens (see section 2.2.2) as well as the smartphone solutions
ARCore and ARKit (see section 2.2.3) allow multiple users with each one device to
share holograms, their position and orientation as well as the status of it (for instance
animations) in either the same room or via network connections.

The smartphone solutions allow multiple users on one device as well since the phone
screen is visible from multiple angles and is not bound to the main user. On the other
hand, the HoloLens visualizes the virtual content on its lenses which makes it only
visible for the wearer. Additionally, the gesture controls of the HoloLens barely works
from any other position as well.

2.3.2 Isolated Experience
As mentioned in the section before and in section 2.2.2, the Microsoft HoloLens offers
the wearer a hands-free experience with a very precise tracking method, but it limits the
visualization and interaction to the wearer him-/herself. At first, this might not sound
like something bad but it is actually for a user who experiences everything the first time
into this new world.

Microsoft offers a spectating possibility logging into the dashboard of the HoloLens

2. Mixed Reality Technologies 7

Figure 2.2: ARCore supports image recognition since version 1.2. Desired images are
defined in a database. On recognition, a linked action is performed and the coordinates
related to the origin can be used for further references [12].

with a secondary device such as a laptop. The dashboard offers tracking controls as
well as a resulted visualization of the what the wearer sees with both the real and the
virtual world embedded. The downsides are that encoding and sending the data via a
wireless network connection results in a delay of multiple seconds in the preview and
additionally reduces render-quality (resolution and in worst case even frame-rate) on
the lenses of the HoloLens itself due to a higher need of processing power. This makes
it impossible without the use of a second HoloLens to instruct the wearer in real-time
and additionally destroys the illusion of a working system due to the quality changes.

2.4 Multi-Platform AR Experiences as a Solution for Isolated
Experiences

To find a possible solution for the problem mentioned in the section above – it is not
possible to manage or instruct wearers of Augmented Reality glasses – a combination
of the systems would be necessary. The possibility to join the same augmented space
with less expense than buying a second HoloLens is not existing for general use.

The idea and result of this thesis should be the thoughts and implementation of
making a system reality that makes it possible to guide a HoloLens-wearer within the
same 3D Augmented Reality space and administrate the running application in real-time
using a smartphone running ARCore.

For a successful project, the system should be able to handle every needed com-
munication between multiple devices (e.g. for synchronized behavior and animations)
and further, the holograms should be placed in relation to the real environment using
a visual calibration method.

Chapter 3

Red Bull Air Race Holo-Info

The creation of a framework which offers an instructor or spectator using ARCore to join
a HoloLens session needs a lot of attention for managing a huge variety of use-cases and
exception handling. Due to the limited time which can be used for the Master’s Thesis,
the essential work is to prove that such a system would work in a clearly defined use-
case. After evaluation of the results of this experiment and probably even more specific
applications (so far after writing this thesis), the implementation and refactoring into
a framework to make this system usable for general Shared Space applications would
start.

For this specified use-case, a collaboration with Stefan Auer was made, a Human
Computer Interaction student who studied as well at the University of Applied Sciences
in Hagenberg im Mühlkreis, Austria. For his Master’s Thesis “Augmented - Reality:
Development and Evaluation of a user-centered prototype for the Red Bull Air Race”
[1] (translated title), he focused on possible interactions and general design thoughts for
a holographic information application. The application was realized in Stefan’s favour
and was structured in a way it can be used as a use-case for this thesis as well.

Stefan Auer is a commentator and analyst for Red Bull Air Races (RBAR) and
had an idea for this application which was an introduction to the rules and general
information about the RBAR which could be used in the VIP-area of Red Bull. This
use-case fits perfectly for this thesis, since instructors would be able to assist the VIP-
members in interacting with the holographic application and allows them to have a talk
with the viewers within the augmented space about the seen.

3.1 About Red Bull Air Races
The Red Bull Air Race World Championship is an extreme-sport tournament in which
extremely skilled pilots compete every year since 2003 [13]. The championship 2018
consists of eight races which are flown all over the world. Every location has an own
unique track with own challenges for each pilot. All tracks consist of multiple pylons
which are air-filled obstacles used to create double gates the pilot has to fly through or
around for a turn. Depending on the length of the course, the pilots fly point-to-point
or lapped races.

The race directors have very precise rules about start speed, entrance angle, flight

8

3. Red Bull Air Race Holo-Info 9

height, g-forces and plane modification limits. The pilots are mostly flying at the rules’
borderlines, physical limits and their own abilities to save every millisecond. Due to
the high-speed and precision balance which every pilot tries to push as far as humanly
possible, the Red Bull Air Races are very famous among flight enthusiasts and motor-
sport fans.

3.2 Presentation and Course of Action
The base for the real environment is a simple table which is the origin for the holographic
application. A map of the track will be virtually placed on this table and shows the track
and further information (see figure 3.1).

The user will be able to progress through instructions of a – in the application
embedded – narrator presenting a total of five rule explanations. Every rule is displayed
as a pin (see figure 3.2) which is triggered by the gaze of the viewer when looked at for
a few seconds. Stefan’s research regarding user attention resulted in the way that every
pin is existing from the beginning on, but are activatable in a given order and color-
coded so the narrator (as well as – for instance – the instructor) can refer to certain
pins.

The guide shows a virtual plane which additionally enforces the vocal rule expla-
nations with visual content via animations. After first evaluations and presentations
in the public, tests clearly showed that especially users which are new to Augmented
Reality and the HoloLens are likely to miss hearing more detailed information in the
rules since they are overwhelmed by what is happening in front of their eyes. To balance
this behavior, important details of the rules are visualized as well: For example, the val-
ues for start speed are shown in speed-o-meters, rules about flight height are visualized
at the gates, etc. After the users finished the guide, they are able to replay any role
explanations or get additional information about pilots.

3.3 Instruction and Possible Manipulations
The voice-files of the narrator and the structure of the program are organized in a way
that the viewer can progress through the hologram without any help if he is able to.
The role of the instructor is used for discussion inside the augmented world and – in
the case the viewer is not familiar with the device – to assist the viewer.

All of the actions in the application are visual objects (such as pins and pilot cards)
which are needed to be gazed at. To offer enough precision, a gaze point is shown as a
red little ball which sticks to the virtual objects and is always in the center of the view.

Persons which are not familiar with Augmented or Virtual Reality and thus are
not familiar with triggering actions by using the device comparable to the way a laser
pointer is used, might still have problems activating the pins and pilot cards since the
actual gaze of the viewer is not necessarily the same as the device’s orientation.

In such cases, the instructor should be able to start the actions without interrupting
the viewer’s experience. This is realized by offering instructor buttons positioned on the
edge of the screen which can be used to start related pins, so a seamless transition to
the next rule explanation is possible.

3. Red Bull Air Race Holo-Info 10

Figure 3.1: The basic concept how the augmented objects are related to an existing
table.

3.4 Augmented Reality Interfaces
The Structural Design of the use-case application is essential for the following design of
network behavior described in the following chapter.

The pins are the triggers for any narrator-playbacks, animations and other visual
components presented to the user. Every pin works with the same base system which
handles interactions, cross-referenced pin management, network sharing and time-coded
actions.

For checking which object is gazed at, a script called GazeManager was created.
The GazeManager needs a game object with the CameraAccessor attached to it. The
CameraAccessor is basically only a collection of the references to the Camera-object,
the attached Audio-object and the cursor which shows the target of the ray-cast.

Each frame the camera position is used to fire a ray-cast along the gaze direction.
The first object hit is checked if it has a component which implements the interface
IGazeAffected, which offers the methods NewGaze, ContinuedGaze and LeftGaze. De-
pending on the state of the last ray-cast – which is saved and handled in the GazeManager
itself – these, in the hit game-object implemented, functions are called accordingly.

To result in a behavior that ignores game-objects that should not block the ray-cast
but just let the ray through the by Unity offered IgnoreRayCast-layer is used for objects
like the plane or back-plates of the pilot profiles.

The handling how long a pin needs to be gazed at is handled in the pins itself. On
activation of a pin, the pin starts multiple procedures to present the information as
defined and the information that the pin got triggered is sent to the corresponding pin
manager which handles the behavior of the other pins in terms of visibility and ability
to be triggered.

3. Red Bull Air Race Holo-Info 11

Figure 3.2: Pin-system for triggering rule explanations.

3.5 GuidePin and PilotPin

The GuidePins, which are used to guide the user through the rules, as well as the
PilotPins are implementing the IGazeAffected interface which is used by the Gaze-
Manager (see section 3.4) to make the pins interactable by the gaze of the user. Both
of the pin-types use the interface-methods NewGaze, ContinuedGaze and LeftGaze to
handle the activation of the pin and its animation. On the activation the pin-types
differ.

PilotPin: On its activation the PilotPin shows the referenced pilot card which is
shown above the map. The card shows important information about the pilot which is
supported by a sound snippet of the narrator.

GuidePin: On the activation of the GuidePin additionally to the sound snippet of the
narrator, an AnimatedFlightPath is started, which contains necessary information for
the plane animations. To make it possible to add custom animations during or after the
flight, the GuidePin-component offers the following extendable methods:

additionalInitializing: This method is used for additionally needed initialization
such as loading reference textures, initial calculations and handling visibility of addi-
tional visual sources for a specific pin.

additionalAnimationWhilePlaneAnimation: Used for time-based visibility handling
such as visualizing rule details, penalties, etc. Invoking those inner actions is based on
the start of the plane animation (same time as pin activation).

3. Red Bull Air Race Holo-Info 12

(Guide/Pilot)Pin

checks if gaze activates pin

starts procedure on activation

keeps GuidePinManager uptodate

GazeManager

handles raycasts

calls IGazeAffected methods
of pins

IGazeAffected

NewGaze()

ContinuedGaze()

LeftGaze()

(Guide/Pilot)PinManager

understands the state of the application

handles accessibility and visibility of pins

calls methods
on ray hit

implements

management
information

on state change

Figure 3.3: Simplified connections and actions in the pin activation process.

additionalAnimationAfterPlaneAnimation: Same as the method above, but uses
the end of the plane animation as invocation time-stamp.

additionalCleaning: This method is needed to unload/hide/show the additional re-
sources which are initialized in additionalInitializing. After the execution of this
method, every source should be managed in a way the application shows as much infor-
mation as before the pin activation.

3.6 Pin-Managers
For both types of pins, there are pin-managers. These are used for hiding all pins during
the pin-actions or controlling which pins are shown. Pin-managers offer two actions
OnPinStart and OnPinFinished which are called by the active pin and handle the
visibility of other pins.

Another task which is handled by the pin-managers is the handling of which pins are
activatable. Although all guide pins are shown, only the next one in the guide, as well
as all pins that were already played, are activatable. The pilot pins are only activatable
once the last guide pin with the last rule explanation was activated.

Chapter 4

Communication

The goal of the extension of the use-case application is creating a virtual behavior as
if the content is existing in the real surrounding. To realize this illusion there are two
essential parts to it: Synchronizing the visualization and other application output on all
connected devices and merging the virtual spaces to one which will handle the position
and orientation of the augmented content.

This chapter is about the communication between the devices to synchronize the
applications running on the devices as well as managing authorizations which device
can interact with the content or just watch to keep the run-time of the application clear
and organized.

4.1 Workload distribution
Especially in the case of the Microsoft HoloLens, the performance overhead is very
limited when running the application. Letting the devices manage permissions and in-
formation sharing between each other can get very complex and is hardly manageable
in the case of debugging. Additionally, it will result in a very poor performance which
can even lead to sickness due to lower frame-rate on the lenses.

To distribute this workload off the devices which are already busy in interpreting
space, processing input and displaying content, a simplified Server-Master-Slave struc-
ture was chosen [4] as seen in figure 4.1.

The Master device is the device which is able to control the application, while the
Slave devices are just receiving information. This is a very basic construct and will be
extended in the following section.

The devices which are used for exploring the application are connected to the same
network as a desktop personal computer which runs the server application. All relevant
information which needs to be forwarded to devices is sent to the server which handles
the information sharing as well as the role management.

4.2 Roles
To allow an organized interaction structure the introduction of roles and associated
permissions is necessary.

13

4. Communication 14

Moderate Refresh

Master Slaves

addi.
data

Figure 4.1: Basic network structure.

Initially, the goal of this solution is the combination of an actor who is in control of
the application and an instructor who is capable of following the progress and manipu-
lating the application in real-time – for instance, starting pins if the wearer is not able
to on his own. But once this system is working, it is nearly effortless to add another
role such as the spectator who can only watch, but not interact or interfere with the
software.

The following role distributions are part of the initial idea, but theoretically, the
instructor could as well use a HoloLens. It would be possible that everyone uses just
an ARCore-supporting device without the need for a single HoloLens as well. It is
important that the roles are distributed in the way described below, but these are not
device specific.

4.2.1 Server
The server application runs on an external device such as a desktop PC and is the
central control point for all information shared over the network. It is necessary to have
exactly one server device in the same network as the client devices. The tasks of the
server are

• confirming or changing desired roles of devices,
• forwarding data which is too confidential to save in the public application,
• keeping track of device information such as role and position,
• receiving state changes by the controller and instructor and
• forwarding these changes to all the other connected devices.

4. Communication 15

4.2.2 Controller
The controller is the main actor in the application. For the general idea of the controller-
instructor structure, the controller is using a Microsoft HoloLens, but as mentioned in
the role section (see section 4.2) basically any AR device could be used for this role.

To keep the run-time clean, there can be only one controller who is controlling
the application. If there is an instructor, a controller is theoretically not necessary
for the application to run properly, but at least either a controller or an instructor is
needed since the spectators are not able to interact with the application. The tasks and
permissions of the controller are

• navigating through the application and
• forwarding state changes to the server.

4.2.3 Instructor
The instructor can navigate through the application just as the controller but the in-
structor is meant to be able to assist the controller, if the controller is not able to activate
triggers on his own or any other problem in the application shows up. The instructor
application is optimized for smartphones and offers dedicated buttons to trigger pins.
Only one instructor can join a session. The tasks and permissions of the instructors are
the same as the controller, but navigation is not done with gazing but buttons.

4.2.4 Spectator
The role with the least amount of permissions is the spectator. The spectator is just as
the name suggests only able to spectate the application from any angle, but not able to
interact with it in any way.

4.3 Networking in Unity
The standalone version of the use-case application is made in Unity 2018 which is
further used to extend the application with the networking features and the space syn-
chronization which is described in the next chapter.

Unity offers multiple versions of networking using a mix of Transmission Control
Protocol (TCP) and User Datagram Protocol (UDP). The two roles of devices – client
and server – both offer to create handlers which get triggered if a certain type of message
is received. Unity Network Messages using the MessageBase can hold multiple simple
or advanced data types which get serialized and de-serialized by the network system.

4.3.1 Multiplayer Optimization in Unity 5
Unity introduced a serious change of networking features in Unity 5. With the new
versions of Unity building a multiplayer game working in the Local Area Network (LAN),
as well as the connection to server structures handling online multiplayer, was made
much easier to implement in Unity.

4. Communication 16

Scripts as the NetworkServer allow multiple NetworkClient-connections via a pre-
defined NetworkManager. The NetworkServer offers to take care of all needed updates
sent to clients, such as automatic transformations of the player avatars.

4.3.2 Using the Legacy Networking
For the planned interactions the system mentioned in the last section is far too superior
since a few tasks such as the verification and transformation updates are done automat-
ically and can barely be changed without deeper manipulation of the scripts themselves.
The use of dummy objects which would be controlled by this system would be possible
but the processing power needed for incoming and outgoing data does not compare with
a system that is optimized for the needed tasks.

Conveniently, Unity still supports the networking structure which was the default
way of handling networking before the multiplayer update in Unity 5.

This way the used NetworkServerSimple has no automated tasks but simply allows
registering handlers which get triggered on incoming NetworkMessages of a given type
which is less data to process than in the updated network system. The message then
gets processed in the handler methods which are defined by the programmer.

4.4 Network Procedure
This section shall describe how and when needed information is spread through the
network and how the connections and roles are established.

4.4.1 Brief Overview
A visualization of the network procedure described in the following paragraphs is shown
in figure 4.2 and 4.3. The following sections will describe the content of messages and
feedback of the application in more detail.

Initializing Procedure: At the start of the application, all needed networking functions
get initialized and a broadcast is sent into the network to find a possible server. To deter-
mine if a server is suitable and not just any device, a DirectConnectRequestMessage is
sent. When the broadcast reaches the actual server, the server sends a DirectConnect-
ResponseMessage back which triggers the client to change to a direct connection rather
than further communication via broadcasts. After the direct connection is established,
the client device sends a RoleRequestMessage to the server which gets answered with
a RoleResponseMessage. With the information of the response, the client finishes the
application initialization by managing content and functions which are restricted to
certain roles.

Looping Procedure: As soon as the roles are set and confirmed by the server, the ap-
plication is successfully running in network mode. Debugging information such as po-
sition, orientation and application status are sent ten times each second via Device-
TransformationMessages to the server which displays the information for a technician
to be interpreted in an error case. The moment the controller or instructor interacts

4. Communication 17

On RoleResponse
Receiving: assigned role

Controller

Enabling view pointer

no

Enabling interaction
with pins

Instructor

yes

Enabling interaction
with instructor buttons

yes

while running

no

Sending
DeviceTransformation

to server

On ApplicationStatusChange
Receiving: pin

Change
&&

!Spectator

no

Sending
ApplicationStatusChange

to server

yes

Starting pin

Figure 4.2: On receipt of the RoleResponseMessage, the application’s initialization is
completed and re-occurring methods are executed.

with the application which would cause a change in the application, the device sends
a ApplicationStatusChangeMessage to the server which is checked by the server. If
the authorization allows this process, the server will then send further Application-
StatusChangeMessages to all other connected devices which then start the procedure
locally.

Ending Procedure: Once the application is closed on the device or the connection would
fail, the server will no longer receive DeviceTransformationMessages which lets the

4. Communication 18

Application Start

Initializing Content Initializing AR

Initializing Networking
(Broadcast within network)

Broadcasting
DirectConnectRequest

On DirectConnectResponse
Receiving: IP of server

Re-initializing Networking
(Direct connection to server)

Sending
RoleRequest

to server

Figure 4.3: Initial network procedure.

server remove the device from its connection list. On a reconnect, the full initial proce-
dure is done again.

4.4.2 Direct Connection Messages
When starting the client application, the state of the server, as well as a possible com-
munication method, are unknown. Instead of making the connection setup complicated
for the user by selecting the correct device or even prompt an IP address, the first mes-
sage sent by the application is a broadcast into the network for an automated server
search (see figure 4.4).

To send a broadcast, the message is sent to the broadcast address of the network.
The broadcast address is the last IP address in a subnet. To make things easier and
faster, the script assumes automatically that the subnet is a C-network – a network
with a 24 net-bit subnet mask 255.255.255.0. For instance, if the IP address of the
client device is 192.168.0.20, the target of the DirectConnectRequestMessage is the
broadcast address 192.168.0.255. The only content of the message is – for debugging
reasons – the name of the client device.

On receiving the DirectConnectRequestMessage sent by a client, the server re-
sponds with a DirectConnectResponseMessage. This message holds the IP address of
the server which is used by the client device to build up a direct connection instead of
the continued use of broadcasting.

4.4.3 Role Messages
After receiving the DirectConnectResponseMessage, the client closes the connection
to the broadcast address and establishes a direct connection using the server IP address
sent via the DirectConnectResponseMessage.

The final initialization step is requesting the desired role – controller, instructor or
spectator – using a RoleRequestMessage.

4. Communication 19

Server

192.168.0.10

Router

192.168.0.1

HoloLens
(Controller)

192.168.0.20

Instructor

192.168.0.21

Spectator(s)

192.168.0.22+

The DirectConnectRequestmessage is sent from all
client devices that just started the application.

This message is used to establish a direct connection
to the server without knowing its IP address.

Package from 192.168.0.20 sent as
a broadcast (to 192.168.0.255).

The DirectConnectRequest is ignored
by client devices ...

... but only accepted by the server.

Figure 4.4: The DirectConnectRequestMessage is the first step for an automated server
connection.

The server checks for the desired role if any other devices already claimed that role.
If the desired role is a unique role such as the controller and instructor and the role is
already in use, the server responds with a repellent RoleResponseMessage.

If the requested role can be accepted by the server, the server saves connection data
sorted by roles including the time-stamp of the last received message by a certain device
which is used for connectivity control (see the following section 4.4.4). Further, the
server initializes visualizations and status information about the authenticated device
for debugging in the server application.

Once the client received his accepted RoleResponseMessage, the application com-
pletes initialization of data and features which are role-dependant. On rejection, the
client will send another RoleRequestMessage requesting the spectator role.

4.4.4 Device Transformation and Timeout
A re-occurring task for the client is started once its role got accepted in the Role-
ResponseMessage: The client sends now multiple times a second DeviceTransfor-
mationMessages to the server carrying the local position of the device which is displayed
in the server application. This data could indicate possible tracking issues.

4. Communication 20

Furthermore, DeviceTransformationMessages are refreshing the server internal
time-stamp which is used to show which devices are still connected. If a device would
freeze, loose connection or disconnect for any other reason which would lead to a time-
out due to the lack of received DeviceTransformationMessages, the server log would
show it.

In general, there is much data sent within the network just for observing reasons. The
server does not only manage network message and respond to them, but log nearly every
action in the background. Additional to the raw log, much information is visualized as
well to quickly identify possible network or tracking problems.

4.4.5 Changes of the Application
Both the controller as well as the instructor are able to interact with the applica-
tion. To synchronize all devices to a new application state, the interacting roles send a
ApplicationStatusChangeMessage to the server as soon as a pin got activated locally.

The ApplicationStatusChangeMessage saves information about the device which
activated a pin, the pin number, if it is a guide pin or pilot pin – which triggers either
the GuidePinManager or the PilotPinManager – and if the pin got activated or the
animation of it ended.

If the server receives such a message, it checks if the sending device is authorized
to request an application change and saves the new state of the application. If a pin is
already running or a device requests a change without permission, the interaction gets
reported in the server log which indicates a synchronization malfunction.

When a request is successful, the server sends every other connected device another
ApplicationStatusChangeMessage which activates the regarded pin locally. This be-
havior prohibits multiple controlling users as well as it detects synchronization problems
or other malfunctions of the software.

These tasks usually create a delay between the activating device and other clients
of less than 100 milliseconds, since the activating device starts the pin already locally
without waiting for a message. The delay could be reduced by ignoring the initial acti-
vation and submitting an own message for the actor, but the delay is short enough to
not interrupt or worsen any experience.

4.5 Implementation
In this section, there will be brief descriptions and overviews of how the roles of section
4.2 and the procedure of section 4.4 were implemented in the Unity project.

The full source code for these scripts is collected on the DVD in the folder RedBull-
AirRace/Assets/Scripts/Networking.

4.5.1 Messages
For every message a class extending UnityEngine.Networking.MessageBase was cre-
ated in the sub-folder Messages.

Within the class the structure of the message is defined using public members:

4. Communication 21

public class DeviceTransformation : MessageBase {
public string deviceName;
public Vector3 position;
public Vector3 rotationEuler;

}

This step alone is not enough for Unity to differ messages from each other. To allow
a correct (de-)serialization every message type needs a unique message type identifier
using the data type short. To allow easy access to those identifiers, they were defined
in an own class MsgTypeExt:

public class MsgTypeExt {
public static short DirectConnectRequest = MsgType.Highest + 1;
public static short DirectConnectResponse = MsgType.Highest + 2;
public static short RoleRequest = MsgType.Highest + 3;
public static short RoleResponse = MsgType.Highest + 4;
public static short DeviceTransformation = MsgType.Highest + 5;
public static short ApplicationStatusChange = MsgType.Highest + 6;

}

The member MsgType.Highest is the highest already used unique identifier for
message types defined by Unity itself. With these definitions it is already possible to
send – for instance – a DeviceTransformationMessage to the server:

public class ClientDevice : MonoBehaviour {
// ...
protected NetworkClient client;
protected Transform deviceTransformation;
// ...
protected void sendDeviceTransformationToServer() {

DeviceTransformation message = new DeviceTransformation();
message.deviceName = SystemInfo.deviceName;
message.position = this.deviceTransformation.position;
message.rotationEuler = this.deviceTransformation.eulerAngles;
this.client.Send(MsgTypeExt.DeviceTransformation, message);

}
// ...

}

4.5.2 Roles
The roles are used to check if certain permissions are granted. The roles are defined as
an enum and offer methods for casting the role from the enum to an int and vice versa.

public class DeviceRole {
public enum Role {

Controller = 0,
Instructor = 1,
Spectator = 2,
Server = 3,
Invalid = 4

}

public static int getRoleAsInteger(Role role) {
return (int)role;

}

4. Communication 22

public static Role getIntegerAsRole(int integer) {
return (Role)integer;

}
}

This offers versatility to cast them into a format that can be used in network messages:
public class ClientDevice : MonoBehaviour {

// ...
protected DeviceRole.Role role;
protected NetworkClient client;
// ...
public void OnBasicConnect(NetworkMessage netMsg) {

// ...
RoleRequest request = new RoleRequest();
request.deviceName = SystemInfo.deviceName;
request.deviceRole = DeviceRole.getRoleAsInteger(this.role);
this.client.Send(MsgTypeExt.RoleRequest, request);

}
// ...

}

and further allows an easy-to-read source code for permissions:
public class ClientDevice : MonoBehaviour {

// ...
protected DeviceRole.Role role;
protected bool roleVerified;
// ...
public void sendApplicationStatusChangeToServer(/* ... */) {

if (this.roleVerified &&
(this.role == DeviceRole.Role.Controller ||
this.role == DeviceRole.Role.Instructor)) {

// granted
// ...

}
}
// ...

}

4.5.3 Outsourcing Permissions
To keep the content of the ClientDevice script clean and remove any specific network-
or role-depending features, the interface INetworkAffected was created. The interface
consists of two methods which need to be defined in any network dependent script:

• void OnNetworkVerification(DeviceRole.Role role) and
• void OnNetworkDisconnect()

For instance, if the connection to the server is established and the role got confirmed,
the ClientDevice script would call the OnNetworkVerification method of all scripts
which implement INetworkAffected:

4. Communication 23

public class ClientDevice : MonoBehaviour {
// ...
public void OnRoleResponse(NetworkMessage netMsg) {

RoleResponse response = netMsg.ReadMessage<RoleResponse>();

if (response.accepted) {
// ...
GameObject[] affectedGOs =

GameObject.FindGameObjectsWithTag("NetworkAffected");
foreach (GameObject affectedGO in affectedGOs) {

INetworkAffected[] affectedComponents =
affectedGO.GetComponents<INetworkAffected>();

foreach (INetworkAffected affectedComponent in affectedComponents) {
affectedComponent.OnNetworkVerification(this.role);

}
}
// ...

}
// ...

}
// ...

}

This event could, as in the example provided, permit using the instruction buttons:
public class ButtonActiveForRole : MonoBehaviour, INetworkAffected {

protected Button button;
protected Image buttonImage;
protected GameObject buttonTextGO;
protected bool buttonEnabled = false;
[SerializeField]
protected DeviceRole.Role allowedRole;
// ...
protected void updateButtonState() {

this.button.enabled = this.buttonEnabled;
this.buttonImage.enabled = this.buttonEnabled;
this.buttonTextGO.SetActive(this.buttonEnabled);

}
// ...
public void OnNetworkVerification(DeviceRole.Role role) {

this.buttonEnabled = (role == this.allowedRole);
this.updateButtonState();

}
// ...

}

4.5.4 Server Functionality
The Server script consists of multiple members used for saving connection data, the
application status and debugging information rendering references which are all used in
methods for fast and easy checks of connections, their roles and timeouts. The general
base of the network functionality is implemented as network handlers.

Only network specific code is described in the next sections; the full source code
is available at RedBullAirRace/Assets/Scripts/Networking/Devices/Server.cs on
the DVD.

4. Communication 24

Members

public class Server : MonoBehaviour {
protected NetworkServerSimple server;
protected int port = 9292;
protected float timeout = 5f;

protected NetworkConnection controllerDevice;
protected float controllerDeviceLastPackage;

protected NetworkConnection instructorDevice;
protected float instructorDeviceLastPackage;

protected Dictionary<int, NetworkConnection> spectatorDevices;
protected Dictionary<int, float> spectatorDevicesLastPackage;

protected bool pinRunning = false;

[Header("Outputs")]
// references to UI elements for outputs such as log, connected devices, etc.
// ...

[Header("Rendering")]
// references to position rendering of the devices
// ...

// ...
}

NetworkServerSimple: As already mentioned in sections 4.3.1 and 4.3.2, the new
networking features released in Unity 5 are offering too many automatic tasks such
as automatic player game-object transformation synchronization and for this use-case
a self-impairing message-system. This is why NetworkServerSimple is used instead of
NetworkServer which are both part of the package UnityEngine.Networking. This
instance offers all the needed functions to send custom messages across the network or
directed at a certain device.

NetworkConnection: These instances represent connections to other devices and offer
functions to send a message to this connection instead of using the server instance to
find the connection-details. The NetworkServerSimple has an own array to save active
connections but since this is not easy extendable with more specific parameters like
roles or similar, the connections are saved in the script in own objects for controller and
instructor. For spectators, a Dictionary contains all the data using an Integer as key
due to the fact that every connection has an own unique integer identifier in Unity.

Time-stamp of last Package: As soon as the devices are connected and got their role
verified, the method void OnData(int connId) gets called on every message receipt.
The function saves the recent time-stamp referenced to the role and connection identifier
which is used to check every two seconds if devices disconnected without the usual
disconnect message (this is described later in this section).

4. Communication 25

Application Status: Last but not least, the server simply saves if the last Application-
StatusChangeMessage (see section 4.4.5) requested a pin activation or informed the
server about a finished pin. This is used to make a pin activation impossible once a
pin is already running. This could happen if the controller activates a pin and before
the information about the change reaches the instructor, the instructor is activating
a pin as well. Another case in which this system is necessary is on failed connections
and another device, which thinks it is an instructor client-sided, tries to activate a pin
(which is additionally secured with the server-sided role verification system).

Initialization and Message Processing

public class Server : MonoBehaviour {
// ...
protected void Start() {

// initializing GUI access
// ...

this.Initialize();
}

public void Initialize() {
this.spectatorDevices = new Dictionary<int, NetworkConnection>();
this.spectatorDevicesLastPackage = new Dictionary<int, float>();
this.spectatorRenderings = new Dictionary<int, GameObject>();
this.server = new NetworkServerSimple();
this.server.RegisterHandler(MsgTypeExt.DirectConnectRequest,

OnDirectConnectRequest);
this.server.RegisterHandler(MsgTypeExt.RoleRequest,

OnRoleRequest);
this.server.RegisterHandler(MsgTypeExt.DeviceTransformation,

OnDeviceTransformation);
this.server.RegisterHandler(MsgTypeExt.ApplicationStatusChange,

OnApplicationStatusChange);
this.server.Listen(this.port);
InvokeRepeating("checkSteadyConnection", 2f, 2f);
this.writeLog("The server listens to " +

NetworkingTools.getLocalIPAddress() + ":" + this.port);
}

protected void Update() {
if (this.server != null) {

this.server.Update();
}

}
// ...

}

In Unity, the method void Start() is executed in the beginning of the application.
A typical task, as done here, is the initialization of the Directory instances. Further,
the NetworkServerSimple instance, used for the communication between the devices,
is created and handlers (see following sections) for all necessary incoming message types
(see section 4.5.1) are defined. Once the server got initialized, every frame (using void
Update()), the server checks the incoming messages and forwards them to the referred

4. Communication 26

methods defined in the handlers.

Assisting Methods

public class Server : MonoBehaviour {
// ...
protected void writeLog(string logLine) {

// used to write something into the raw log (...)
}

protected void checkSteadyConnection() {
if (this.controllerDevice != null) {

if (this.controllerDeviceLastPackage + this.timeout < Time.time) {
OnControllerDeviceDisconnect(true);

}
}
// check other devices with other roles (...)

}

protected DeviceRole.Role checkRoleOfConnection(int connectionID) {
// checking controller
if (this.controllerDevice != null) {

if (this.controllerDevice.connectionId == connectionID) {
return DeviceRole.Role.Controller;

}
}

// check other roles (...)

// no role indentified
return DeviceRole.Role.Invalid;

}

protected void setTransformationOfRendering(...) {
// used for updating the rendering of the position in space (...)

}

protected void OnData(int connId) {
// sent by controller?
if (this.controllerDevice != null) {

if (connId == this.controllerDevice.connectionId) {
this.controllerDeviceLastPackage = Time.time;
return;

}
}
// check other roles and connections (...)

}

protected void OnControllerDeviceDisconnect(bool timedout = false) {
// resetting visualization and updating information (...)

}

protected void OnInstructorDeviceDisconnect(bool timedout = false) {
// resetting visualization and updating information (...)

}

4. Communication 27

protected void OnOtherDeviceDisconnect(int connId, bool timedout = false) {
// resetting visualization and updating information (...)

}
// ...

}

Timeout: As already mentioned in the initialization process of the server, the method
void checkSteadyConnection() iterates through all connected devices and checks if
the timeout threshold was reached. Usually, every device sends a DeviceTransfor-
mationMessage multiple times a second (see section 4.4.4). Every time the server re-
ceives a message, it refreshes the time-stamp of the connection in the method void
OnData(int connId). If a connected device does not send messages for five seconds
(according to the member float timeout), it is assumable that the device froze or lost
connection in another way which leads to a server-sided disconnect. Client-sided, the
device should recognize the connection-loss as well and will remove all of the client-sided
permissions and tries to reconnect to the server using again a broadcast (in case the IP
of the server changed).

Role Check: Not only is the role confirmed by the server using the RoleResponse-
Message (see section 4.4.3), but confirmed roles are saved on the server in case a bug in
the client application would falsely interpret messages or a short connection loss would
not remove the client-sided permissions. For diverse (network-related) exceptions, the
server is the confirming instance which decides if an action is granted or not.

Other Methods: The rest of the methods shown in the above source code are mainly
for managing connection data and rendering of the devices. These are mostly used
for debugging information and role changes which are not further described to keep
the focus on the important methods but the full source code available on the DVD is
reasonable commented for further information.

Handlers

This section gives insight about how the server responds to certain types of network
messages sent by the client devices. Again, only essential parts of the source code are
presented and discussed here, while the full source code is available on the DVD in
RedBullAirRace/Assets/Scripts/Networking/Devices/Server.cs.

public class Server : MonoBehaviour {
// ...
public void OnDirectConnectRequest(NetworkMessage netMsg) {

// send response
DirectConnectResponse response = new DirectConnectResponse();
response.deviceName = SystemInfo.deviceName;
response.ip = NetworkingTools.getLocalIPAddress();
netMsg.conn.Send(MsgTypeExt.DirectConnectResponse, response);
this.writeLog(

"The device " + netMsg.ReadMessage<DirectConnectRequest>().deviceName +
" is switching to direct connect..."

);
}

4. Communication 28

// ...
}

On receiving a DirectConnectRequestMessage, the content of that message is not
interesting, except for displaying debugging information. Handler methods receive a
NetworkMessage which not only can be read to result in the needed message type but
further holds information about the sender. The member conn, which is an instance of
NetworkConnection, can be directly used to send a DirectConnectResponseMessage,
containing the IP address of the server, back.

public class Server : MonoBehaviour {
// ...
public void OnRoleRequest(NetworkMessage netMsg) {

// read message
RoleRequest request = netMsg.ReadMessage<RoleRequest>();
// logging information (...)

// prepare response
RoleResponse response = new RoleResponse();
response.deviceName = SystemInfo.deviceName;
response.accepted = false;

// check if desired role can be accepted
if (DeviceRole.getIntegerAsRole(request.deviceRole) ==

DeviceRole.Role.Controller && this.controllerDevice == null
) {

response.accepted = true;
this.controllerDevice = netMsg.conn;
this.controllerDeviceLastPackage = Time.time;
this.controllerDeviceOutputText.text = request.deviceName;
// logging information (...)

}

// similar check for instructor; spectators need no check (...)

// refresh timeout
OnData(netMsg.conn.connectionId);

// send response
netMsg.conn.Send(MsgTypeExt.RoleResponse, response);
if (!response.accepted) {

// logging information (...)
}

}
// ...

}

The handler void OnRoleRequest(NetworkMessage netMsg) is executed on receiv-
ing a RoleRequestMessage. Once the NetworkMessage was read for the related message
type, the information is checked. If the requested role is either controller or instructor,
the server checks if the role is already in use; if it is free, it saves the connection data
of the device, initializes the timeout functionality, displays information about the con-
nection and sends a RoleResponseMessage to the client. From now on, the device is
confirmed on the server and the client will enable permission-dependent actions on the
device.

4. Communication 29

public class Server : MonoBehaviour {
// ...
public void OnDeviceTransformation(NetworkMessage netMsg) {

// refresh timeout
OnData(netMsg.conn.connectionId);

// read message
DeviceTransformation message = netMsg.ReadMessage<DeviceTransformation>();

// refresh rendering transformation
DeviceRole.Role role = this.checkRoleOfConnection(netMsg.conn.connectionId);
Vector3 position = message.position;
Vector3 rotationEuler = message.rotationEuler;
this.setTransformationOfRendering(...);

}
// ...

}

As already mentioned in the initialization process of the server, DeviceTransfor-
mationMessages are sent multiple times a second by the connected and verified clients.
Beside the debugging view in the server application which shows the position of the
devices related to the map in the center of the scene (which would show tracking issues),
these messages are used to check if the connection is still successful; if a device would
loose the connection or freeze, the messages would not be sent, resulting in a timeout.

public class Server : MonoBehaviour {
// ...
public void OnApplicationStatusChange(NetworkMessage netMsg) {

// refresh timeout
OnData(netMsg.conn.connectionId);

// read message
ApplicationStatusChange request =

netMsg.ReadMessage<ApplicationStatusChange>();

// check if the request came from an authorized device
DeviceRole.Role role = this.checkRoleOfConnection(netMsg.conn.connectionId);
if (role == DeviceRole.Role.Controller ||

role == DeviceRole.Role.Instructor)
{

// authorized

// checking if action is possible due to application status (...)

// change application status text (...)

// send application change to other devices (only if pin got activated)
if (request.pinStarted) {

// pin started -> send to all other devices
request.deviceName = SystemInfo.deviceName;

if (role != DeviceRole.Role.Controller &&
this.controllerDevice != null)

{
this.controllerDevice.Send(MsgTypeExt.ApplicationStatusChange,

request);
}

4. Communication 30

// same for instructor and spectators (...)
}

} else {
// log action by spectator, client-sided error (...)

}
}
// ...

}

When receiving a ApplicationStatusMessage, the first task for the server is to
check if the sender is permitted to call such an action. If a message comes from a device
other than a controller or instructor, there is probably a client-sided error since this
device should not be able to send this request. Further, the server will cross-check if the
request is able by comparing the application status with it. If all checks are successful,
the server will forward this message to all other devices and force them to activate that
pin locally. The moment the pin finishes, the sender of the activation request will send
another ApplicationStatusMessage, telling the server that the pin was completed so
the server is ready for a new message on activation by a controller or instructor.

4.5.5 Client Functionality
The functionality of the script ClientDevice – full source code at RedBullAirRace/-
Assets/Scripts/Networking/Devices/ClientDevice.cs on the DVD – is not that
different from the Server script (see section 4.5.4). It uses as well network handlers
for receiving and processing messages sent by the server. Additionally to the server’s
functionality, the client obviously has some deeper connections to the actual application
and offers a few methods which are used by other scripts (for instance: activation of pins
in the Pin script and then sending an ApplicationStatusMessage using the Client-
Device script).

Members

public class ClientDevice : MonoBehaviour {
protected CameraAccessor cameraAccessorComponent;
protected GuidePinManager guidePinManager;
protected PilotPinManager pilotPinManager;
protected Transform deviceTransformation;
protected float refreshRateTransform = .05f;
protected NetworkClient client;

[SerializeField]
protected DeviceRole.Role role;

[SerializeField]
protected string broadcastIPAddressOverride;

protected int serverPort = 9292;
protected bool serverFoundViaBroadcast = false;
protected bool roleVerified = false;
// ...

}

4. Communication 31

For the needed access to the local application data, the CameraAccessor – which of-
fers methods for getting the camera object, audio source and cursor – the transformation
(local position) of the device and access to the pin managers is saved.

The equivalent of NetworkServerSimple for client-sided use (only connection to one
server device) is NetworkClient which’s instance allows us to receive and send custom
network message needed for the synchronization and management of devices.

The member bool serverFoundViaBroadcast remembers which type of connection
the client device need to establish. If this member is false a server was not found yet
by using a broadcast or the connection to an old server got lost and the next connection
should be established using a broadcast to find a server. If a server was found and
answers with a DirectConnectionResponse (see section 4.4.2), the member will have
the value true to indicate to use a given IP instead of a broadcast IP as target.

Another safety feature is blocking actions which need a verified role without having
a confirmation by the server. The role of the device is set in the script in the member
role which is only a desired role which does not mean that the role was confirmed by
the server; which is the task of roleVerified.
Initialization

public class ClientDevice : MonoBehaviour {
// ...
protected void Start() {

this.Initialize();
}

public void Initialize() {
#if UNITY_ANDROID

StartCoroutine(CheckCompatibility());
#endif
// getting reference to CameraAccessor instance (...)
if (this.cameraAccessorComponent == null) {

Debug.LogError("CameraAccessor not found!");
} else {

// getting references to other local scripts (...)
this.client = new NetworkClient();
this.client.RegisterHandler(MsgType.Connect, OnBasicConnect);
this.client.RegisterHandler(MsgType.Disconnect, OnDisconnect);
this.client.RegisterHandler(

MsgTypeExt.DirectConnectResponse, OnDirectConnectResponse);
this.client.RegisterHandler(MsgTypeExt.RoleResponse, OnRoleResponse);
this.client.RegisterHandler(

MsgTypeExt.ApplicationStatusChange, OnApplicationStatusChange);
this.searchAndConnectServer();

}
}
// ...

}

The initialization of the ClientDevice is straight forward: Saving the references
to needed local scripts, registering network handlers (details in further sections) and
connecting to the server.

Additionally in the ARCore build, the method void CheckCompatibility() is
called which checks if the device supports ARCore, needs an update or is unsuitable for

4. Communication 32

the application.
The method void searchAndConnectServer() is used to search for a server in the

network using broadcast if the member bool serverFoundViaBroadcast is still false.

Assisting Methods

public class ClientDevice : MonoBehaviour {
// ...
protected void sendDeviceTransformationToServer() {

DeviceTransformation message = new DeviceTransformation();
#if UNITY_ANDROID

message.deviceName = SystemInfo.deviceModel;
#else

message.deviceName = SystemInfo.deviceName;
#endif
message.position = this.deviceTransformation.position;
message.rotationEuler = this.deviceTransformation.eulerAngles;
this.client.Send(MsgTypeExt.DeviceTransformation, message);

}

public void sendApplicationStatusChangeToServer(string pinName, int
internalPinNumber,

bool guidePin, bool started
) {

if (this.roleVerified &&
(this.role == DeviceRole.Role.Controller ||
this.role == DeviceRole.Role.Instructor)

) {
ApplicationStatusChange message = new ApplicationStatusChange();

#if UNITY_ANDROID
message.deviceName = SystemInfo.deviceModel;

#else
message.deviceName = SystemInfo.deviceName;

#endif
message.affectedPinName = pinName;
message.internalPinNumber = internalPinNumber;
message.guidePin = guidePin;
message.pinStarted = started;
this.client.Send(MsgTypeExt.ApplicationStatusChange, message);

}
}
// ...

}

The method void sendDeviceTransformationToServer is executed multiple times
a second – depending on the value of the member float refreshRateTransform – once
the role was verified with a received RoleResponseMessage. So by default, every 50
milliseconds the local transformation in relation to the origin of the scene is read and
sent to the server which will display this information. This is mainly for interpreting
tracking issues.

Depending on the pin type, the GuidePinManager or PilotPinManager are called
by a pin when it gets activated. The pin managers check if the activation is conform with

4. Communication 33

the local role and send an ApplicationStatusChangeMessage to the server using the
method void sendApplicationStatusChangeToServer provided in the ClientDevice
script. The server cross-checks the permission and if granted, forwards the information
to other connected devices (see more details in section 4.5.4).

Handlers

Last but definitely not least, the network handlers are the most important definitions
since they handle receiving messages and the correct response or following actions
needed. A brief overview of which handlers need to be registered was already shown
in the initialization section of the ClientDevice script.

public class ClientDevice : MonoBehaviour {
// ...
public void OnBasicConnect(NetworkMessage netMsg) {

if (!this.serverFoundViaBroadcast) {
// server found by broadcast
this.serverFoundViaBroadcast = true;
// requesting direct connection
DirectConnectRequest request = new DirectConnectRequest();
#if UNITY_ANDROID

request.deviceName = SystemInfo.deviceModel;
#else

request.deviceName = SystemInfo.deviceName;
#endif
this.client.Send(MsgTypeExt.DirectConnectRequest, request);

} else {
// server was already found by broadcast
// client connected now via direct connection
// send role-request
RoleRequest request = new RoleRequest();
#if UNITY_ANDROID

request.deviceName = SystemInfo.deviceModel;
#else

request.deviceName = SystemInfo.deviceName;
#endif
request.deviceRole = DeviceRole.getRoleAsInteger(this.role);
this.client.Send(MsgTypeExt.RoleRequest, request);

}
}

// ...

public void OnDirectConnectResponse(NetworkMessage netMsg) {
// read message
DirectConnectResponse response =

netMsg.ReadMessage<DirectConnectResponse>();
// connect directly
this.client.Disconnect();
this.client.Connect(response.ip, this.serverPort);

}
// ...

}

4. Communication 34

The handler void OnBasicConnect is called on the very first connection step be-
tween client and server; when the client and server never communicated before or had
a successful disconnect.

If the client and server did not connect before, the client used a broadcast to reach
it (according to the planned network procedure described in section 4.4). To minimize
network load the system changes after the broadcast server search to a direct connection
via IP which is received after sending a DirectConnectRequest to the server. As seen
in the handler method void OnDirectConnectResponse, the next step after a basic
connection is done in the void OnBasicConnect handler and not further defined in the
response handler.

The client receives the DirectConnectResponseMessage, closes the broadcast con-
nection and connects again using the IP address in the received message. On the second
basic connection between client and server, the member bool serverFoundViaBroad-
cast indicates that not another DirectConnectRequest is needed but the direct con-
nection is established and a role request should be sent.

public class ClientDevice : MonoBehaviour {
// ...
public void OnRoleResponse(NetworkMessage netMsg) {

// read message
RoleResponse response = netMsg.ReadMessage<RoleResponse>();

if (response.accepted) {
// role accepted
this.roleVerified = true;

// start transmitting device-transformation
InvokeRepeating("sendDeviceTransformationToServer", 0f, .05f);

// calling OnNetworkVerification of INetworkAffected-scripts (...)
} else {

// role denied
// change to spectator
this.role = DeviceRole.Role.Spectator;
this.client.Disconnect();
this.searchAndConnectServer();

}
}
// ...

}

After the server processes the sent RoleRequestMessage, it responds with a message
handled by the void OnRoleResponse handler. If the desired role was accepted, the
member bool roleVerified is set to true which is needed for local permission checks,
the client starts to send the transformation messages needed for debugging and timeout
features and calls the INetworkAffected scripts of the application (see section 4.5.3).
After this procedure, the device is officially connected with the server, completed the
initialization and is therefore synchronized in the application.

If the desired role was not accepted, the desired role is set to the spectator role and
the client will disconnect from the server and complete the full initialization procedure
again.

4. Communication 35

public class ClientDevice : MonoBehaviour {
// ...
public void OnApplicationStatusChange(NetworkMessage netMsg) {

// read message
ApplicationStatusChange message =

netMsg.ReadMessage<ApplicationStatusChange>();

if (message.pinStarted) {
// need to start pin
if (message.guidePin) {

// is guide pin
this.guidePinManager.startPin(message.internalPinNumber, true);

} else {
// is pilot pin
this.pilotPinManager.startPin(message.internalPinNumber, true);

}
}

}
// ...

}

Once verified in the network communication, the client is the target of sharing
changes in the application status. The server will send a ApplicationStatusChange-
Message if the controller or instructor activated a pin. When this message is received,
it will be processed in the corresponding handler which will read the message, interpret
which pin got activated and start it locally as well. If the client device is a controller or
instructor, the pin managers will further send another ApplicationStatusChangeMes-
sage once the pin is completed.

public class ClientDevice : MonoBehaviour {
// ...
public void OnDisconnect(NetworkMessage netMsg) {

// stop sending device-transformation
CancelInvoke("sendDeviceTransformationToServer");

// calling OnNetworkDisconnect of INetworkAffected-scripts (...)

// resetting device-status
this.roleVerified = false;
this.serverFoundViaBroadcast = false;
// try to find new server
Invoke("searchAndConnectServer", 3f);

}
// ...

}

If the connection to the server gets lost – no matter if network issue, stopping the
application or shutdown of the server – the continuing transformation sharing to the
server is stopped and all network-affected scripts are called which refresh the local
permissions (see section 4.5.3). After this the network status gets reset by undoing
permission members and searching a new server.

Chapter 5

Spatial References

Designing and implementing network behaviors (see chapter 4) made it possible to let
applications on multiple devices run in a synchronized manner: The state on every
device is the same and once a user with the permission activates a pin, the ClientDe-
vice script and its cooperating scripts activate the pin locally and send the data to the
server which forwards the information to all other devices that will start the pin as well.

This was one of two essential tasks to create a holographic application running virtual
objects in the real world just as if they were really there. But until the completion of
this second task which is discussed, conceived and implemented in this chapter, the 3D
positioning of the scene depends on the position of the device when the application is
started.

5.1 Requirements and Options
Mapping the application for every user to the same place, for instance on a table,
depends on multiple factors such as

• tracking method,
• mapping method and
• referencing.
These factors are not always separable but often have direct effects on other factors.
The tracking method describes how devices positions and orientations are tracked and

measured in a surrounding mapped either automatically due to spatial requirements or
accept variable surroundings which are interpreted in real-time. Once the transformation
of the device and the required properties of the surroundings are defined, a reference is
needed to define the position and orientation of the holographic content.

5.1.1 Absolute and Relative Tracking
To correctly display the virtual content, not only the position and orientation of the
content, designed in a virtual space, but the relation between virtual positioning and
reality is important. Interpreting the position of a device in space can be either done in
a limited or unlimited space.

36

5. Spatial References 37

Absolute Tracking in a Limited Space

In an enclosed area, it is possible to track a device absolutely in space. A common
method in installations is the use of HTC Vive trackers, an accessory of the HTC Vive
ecosystem further known as SteamVR.

The fist-sized trackers can be attached to any object and are tracked inside the play
area which is defined by the positioning of the light houses emitting a timed laser grid.
The timing how often a sensor on the tracker is hit by the moving laser plane makes it
possible to calculate the movement every update in both axis by multiple light houses
(see figure 5.1), resulting in a very precise tracking [3]. The use of multiple sensors on
a tracker adds as well information about the orientation of the tracker.

Although the limitation in space would not be a problem in this use-case, it is a
limitation which can be removed by using a relative tracking method offering the use of
bigger holograms or even collections of holograms in combination with mapping data.
Further, the use of HTC Vive trackers is not suitable if the users want to use their own
devices which would need additional preparation time for mounting the tracker and an
own system processing the tracking data.

Absolute tracking is very precise and useful for static installations with prepared
devices offered to use by the visitors but introduces hardware requirements connected
with additional costs and work, and is limited in space.

Relative Tracking

Relative tracking usually uses the initialization position as origin. Technologies such
as the Microsoft HoloLens and Google’s ARCore offer this tracking method with their
embedded hardware.

Both of the AR systems use their accelerometers, motion sensors and in case of
ARCore visual input to track their position and map the surrounding (further details
in section 5.1.2) and cross-use this data for enhanced stabilization of the tracking (for
general information see chapter 2).

Positioning a virtual object at the coordinate point P(0|0|3) in Unity would result
into a positioning three meters in front of the user once the application is initialized.

Relative tracking is an automatic working method if the devices support it. The
quality of the hardware and software solutions result in varying tracking quality. To-
day’s Augmented Reality solution offer surprisingly exact tracking and stabilization in
most cases. While Microsoft’s HoloLens has no troubles in poor lighting conditions
and is nearly independent of mapping information, Google’s ARCore depends on cross-
referenced mapping data which is as well used for tracking stabilization due to the
mainly visual tracking and its downsides such as camera blur on fast movement.

5.1.2 Static and Dynamic Mapping
The term mapping in this context is used for describing how the data of the real sur-
rounding can be converted in data-sets which can be further used for referencing (further
details in section 5.1.3) or features based on virtuality (see section 2.1).

5. Spatial References 38

Figure 5.1: The tracking of SteamVR by HTC and Valve works with moving laser planes
emitted by lighthouses. Depending on the timing of laser hits on the sensors, the position
of a sensor in the room can be calculated. Using multiple sensors on a tracking device,
such as the HTC Vive trackers, allow orientation tracking as well [14].

Static Mapping

Static mapping is the easiest method to link the virtual content and reality’s surround-
ings together but it only works with static installations using absolute tracking (see
section 5.1.1).

The idea behind this mapping technique is to set up the real scenery in the play area
(the tracked area) precisely dependent on the origin of the play area. This real scenery
is directly implemented in the application, so all of the information of the objects in
the application area are saved in the software already which can be used for physics
simulations, advanced virtual lighting and further virtuality features.

In the case of using Augmented Reality devices such as the Microsoft HoloLens and
Google’s ARCore, this mapping method is not usable since it is using relative tracking
which means the origin of the virtual content does not match with the origin of the
device tracking. This problem could be solved with physical initialization positions –
for instance offered devices for the presentation have position-specified holders and the
application is started in them, so the origin of the virtuality matches with the origin of
the tracking. Further, could such physical references be used for resetting origins using
Near Field Communication (NFC); the user starts the application and puts the used
device in a physical holder with an NFC chip which sets a new origin for the tracking,
so the origins match.

Although these workarounds exist and work for closed area installations, the quality
depends on the precision used to embed the real world in the virtuality. Further, tracking
problems would offset the origin matching again which would force the user to once again
go to the physical reference and re-calibrate.

5. Spatial References 39

Dynamic Mapping

Dynamic mapping is using sensors and Computer Vision techniques to interpret the
surroundings in real-time. This method is becoming more common in the last years
since the processing power of devices is increasing exponentially. It is not possible to
completely 3D scan the environment out of the view of the user but today’s technology
does already a good job interpreting obvious geometry in real-time.

The HoloLens uses multiple distance sensors and cameras to scan the reality. The
sensor data results in a 3D grid of the objects in front and to the side of the wearer
comparable to throwing a blanket over the objects (see figure 5.2). The precision of
this interpretation is limit to the resolution of the sensors and the processing power of
Microsoft’s wearable smart glasses. The system of the HoloLens is able to detect most
surfaces, understand whole objects with additional algorithms and uses the information
for features such as occlusion.

Augmented Reality solutions running on the smartphone such as ARCore by Google
and Apple’s ARKit use the renderings of the camera for mapping objects in reality. This
is a much more complicated approach but does not require additional hardware. The
quality of the mapping is directly connected camera specifications such as resolution,
luminous sensitivity and blur due to aperture and shutter timing. Google’s and Apple’s
algorithms are comparable with minor differences in results: Both are able to detect flat
surfaces (horizontal and vertical) as planes which are not limited in size by real edges
but rather work like tangents.

In general, dynamic mapping is and will never be as precise as static mapping but
is not limited to certain handled scenes and works dynamically in every space which
meets the conditions to have a qualitative mapping/detection.

5.1.3 Referencing
This section describes the possibilities to position and orientate virtual objects in the
three-dimensional AR space depending on tracking references, geometric mapping ref-
erences or visual references.

Relative Coordinate References

With coordinate references relative to the position or initialization point of the tracked
device, it is possible to position virtual objects static or semi-dynamic in a very easy
but as well feature-weak manner.

Using this method, tasks such as “on application start, position the hologram two
meters in front of the viewer, 50 centimeters lower than the user’s eyes” or “when
the viewer looks down, show debugging information around the user” are easily imple-
mentable but any relations to the reality are not possible (except with preset static
mapping information or in general, when the relation between virtuality and reality is
known by using for instance a physical origin as described in section 5.1.2).

Geometric References

Geometric references (no matter if static pre-coded mapping or dynamic interpretation
of the reality) are used to position and orientate augmented objects in relation to surfaces

5. Spatial References 40

Figure 5.2: Devices such as the Microsoft HoloLens use distance sensors to map a 3D
grid of the environment which’ data can be used for physics simulations, path-finding,
occlusion and further virtuality features [16].

of geometry data.
The HoloLens builds a full 3D grid of mapped objects which can be used to reference

transformations anywhere in relation. Tasks such as “place the map on a table (flat
horizontal surface) with a length between two and three meters and a width of one to
one and a half meters” are natively possible by accessing the mapping information of
the HoloLens in real-time.

For object-dependent placement, additional algorithms such as CurvSurf ’s Find Sur-
face (more in chapter 1) might be needed for tasks such as “place a virtual sphere (red,
10 centimeters in diameter) on top of all detected spheres with a diameter between 30
and 50 centimeter”.

ARCore can detect flat surfaces such as tabletops and walls as well but does not
detect edges which means the plane is not limited to the border of, for instance, a table.
Further, the detection of bigger planes is much slower than on the HoloLens since the
smartphone solutions need more movement for detection. Anyhow, positioning on such
detected planes via touch is simple and intuitive.

Visual References

Visual references are detected by using visual sensors such as cameras. The detection
and conversion of visual data representations such as QR codes are already possible for
years but recent Computer Vision techniques make it possible to calculate the position
and orientation of images in three-dimensional space if the size of the actual image is
known.

ARCore supports multiple image recognition since version 1.2. On detection of an
image stored in the (custom) database, an event is triggered and the origin of the image

5. Spatial References 41

is available in the virtuality which makes positioning related to the detected image
possible.

Microsoft’s HoloLens does not natively support image recognition but compatible
frameworks such as Vuforia [17] support image recognition using a similar method as
ARCore uses.

5.2 Concept
The goal of the spatial references is to synchronize the visual content of the application
running on multiple devices in space. This task can be done in many ways as already
indicated in section 5.1 but this should be done to be easy for the user without attracting
too much attention to the references themselves. For the defined use-case, it was planned
to place a map on a table, the users go towards the table and until they arrive at their
desired viewing position, the synchronization – both the communication and spatial
aspects – should be finished.

In the described concept using static tracking is only possible when using prepared
devices which rest in a mapped region with the relation to the target space known.
Since the users should be able to use their own devices as well if they wish to do so,
static mapping in combination with the relative tracking the HoloLens and ARCore
offer is not possible due to the fact that the origin (initialization point) of the devices
is unknown.

Using geometric references of the dynamic mapping of the HoloLens would theoret-
ically work – for instance, defining the size of the table in the software and the system
is able to detect it – but purely depends on the positioning of the user. If the table is
not fully detected, the software might not identify it and create exceptions. Further, the
use of geometric references would not work on the ARCore platform since the mapping
is rather simple and is not limited by the borders of the tabletop.

So probably the most suitable method would be the usage of the relative tracking
and a visual indicator for image recognition. The marker should not be clearly identified
as one to not attract the attention but still be valuable enough to be used for the
referencing. For this use-case, the marker (a 30 by 16 centimeter big logo of the Red
Bull Air Race) will be stuck to the tabletop in a horizontal alignment (see figure 5.3) to
keep the positioning simple, although an evaluation in section 6.2.2 showed that vertical
alignment is positively affecting the recognition distance. To detect the marker, Vuforia
is required on the HoloLens; ARCore offers a natively included image recognition.

For possible adjustments in using certain frameworks, an evaluation of the two sys-
tems regarding image recognition was completed in section 6.2.2 showing that Vuforia’s
image recognition works on greater distances and therefore do not need that much at-
tention. The usage of Vuforia in combination with ARCore was tested without success
due to manifest merging exceptions because of incompatibility at this point of time. A
complete switch to Vuforia instead of ARCore might have been a possibility but it was
not manageable in time to rebuild the whole application in the progress of this master’s
thesis.

5. Spatial References 42

Figure 5.3: The reality setup of the spatial referencing is sticking a 30 by 16 centimeter
big Red Bull Air Race logo flat on the tabletop. Evaluations in section 6.2.2 showed that
a vertical alignment would be increasing the detection range but a horizontal orientation
is for test cases easier to recreate.

5.3 Implementation
As mentioned in section 5.2, two different systems are used for the image recognition
used to get a spatial reference for positioning the scene in 3D space. For the HoloLens,
the system Vuforia is used which is capable of image recognition and would even offer
object detection. Sadly, Vuforia cannot be combined with ARCore since to incompati-
bilities but Google offers since version 1.2 an own image recognition algorithm natively
implemented in ARCore.

Although these two systems work with similar approaches, the development for using
them is very different. ARCore’s native image recognition offers very open development
methods such as using own script for further processing, while PTC (the developers
of Vuforia) keeps their system rather closed. In the case of Vuforia, deeper processing
is only possible by changing deeper Vuforia aspects. Since some behavior of Vuforia is
not perfect for this use-case and fully understanding the system and how to interrupt
or manipulate it is barely manageable without huge time investments, some additional
tasks could not be implemented in an optimized manner.

5.3.1 Vuforia on the HoloLens

About Vuforia and Licensing

Vuforia is an Augmented Reality system made by PTC offering advanced Computer
Vision technologies. Additionally to the required image recognition in 3D space, Vuforia
is capable of detecting multiple images at the same time – either flat images, on cuboids
or cylinders – or even 3D objects in reality.

5. Spatial References 43

PTC offers one-time paid licenses which grant publication rights, cloud licenses ex-
tend the classic license with target databases synchronized in their cloud or for even
more sophisticated projects, advanced licensing with even better visual knowledge em-
bedded software. For personal or research use with basic functionality – as needed in
this project – Vuforia is free to use with a limitation in actions per month which is more
than high enough for this project.

Receiving a development license is done via PTC ’s online platform in the developer
section; only the registration of a free account is needed. After that, the developer has
access to request a license for a specified app. The free license is limited to 1000 cloud
recognitions per month and is only applicable for personal or research use. The about
200 character long license string is needed later in Unity to activate Vuforia’s features.

Databases and Targets

The creation and management of databases containing the collection of targets (refer-
ences of either flat images, cuboids, cylinders or 3D models) is done on their online
platform as well. Every target needs the visual reference and the width of the reference
used in reality; this information is needed for the depth perception.

Once the database is completed for its use, it can be downloaded for their own
development platform or for the use in Unity which outputs a custom unitypackage
file. This file is later imported into the Unity project and automatically embedded in
the Vuforia system.

Basic Usage of Vuforia in Unity

To include Vuforia’s features in the Unity package, the Vuforia package of the Unity
Asset Store needs to be downloaded and imported. For general usage, the plugin Vuforia
Core SDK is recommended but PTC created as well an asset called Vuforia HoloLens
Sample which already offers a configuration prepared and optimized for the usage on
the Microsoft HoloLens.

Once Unity is set up, the script Vuforia Behaviour is added to the First Person
Camera game object to enable Vuforia features. The script itself offers to set the World
Center Mode to DEVICE (using the device’s initialization as the scene’s origin), FIRST_-
TARGET (shifting the whole scene to the first detected anchor) or SPECIFIED_TARGET
(shifting the whole scene to a defined anchor on detection). For the desired usage,
DEVICE would be the recommended since we need the change of position for detecting
certain events (see next section).

The linked VuforiaConfiguration represents all possible behaviors which are pos-
sible without changing the code of Vuforia. When using the Vuforia HoloLens Sample,
all the settings are already optimized for the use with the HoloLens such as the defi-
nition of the Device Type as Digital Eyewear and a complete Device Configuration for
the HoloLens. The imported Vuforia Target Database should be shown in the section
Databases as well. Further configuration parameters allow setting up extended tracking
as well as a simple debugger mode called Vuforia Play Mode which allows using a web-
cam for fast debugging tests without deploying the project to the HoloLens or other
target devices.

The last needed task is to manage the targets in virtuality. In the example of the

5. Spatial References 44

use-case, every visual content (children of the game object Las Vegas) should be moved
to the recognized position of the image. To implement this behavior, a new empty game
object called ImgRecogTarget was created which is the new parent of the game object
Las Vegas.

To set this new game object as the target for the image recognition, the script Image
Target Behaviour needs to be added, offering settings for the detection. The type
selection offers the values Predefined (using a specific target which cannot be changed
at run-time), User Defined (using a specific target by name; offers changes at run-time)
and Cloud Reco (allows using a database in the cloud). When selecting Predefined which
is enough for the use, the database and image target need to be selected.

Further, the Image Target Behaviour script automatically adds a Mesh Filter
and Mesh Renderer to the game object. Since the visualization of the recognition is
not necessary, the Mesh Renderer was disabled. It is important to notice that the game
object with the applied Image Target Behaviour script is automatically scaled to the
size of the image which should be recognized, leading to a scaling of the children (the
whole visual scene) as well. To prohibit this scaling, Vuforia offers an option in the
Advanced section of the target behavior which is preserving the scaling of the children.
Another way to solve this problem is to add another game object between the ImgRe-
cogTarget and Las Vegas which has an inverted scaling – for instance: scaling of the
target is 0.3, so the scaling of the compensator is 3.333333.

These short steps are already enough to position the scene to a recognized image
reference but this does not lead to a good result since important features are not imple-
mented in the behavior yet. There is no simple way to access an event which is triggered
on detection to, for instance, hide certain objects before the detection and show them
afterward as well as limitations in the target transformation are not possible.

Extending or Changing Vuforia’s Behavior

Possibilities to extend or change the behavior of Vuforia are natively limited since there
is no possibility to add in own code without breaking open the scripts which would be
possibly lost progress on updates of the system. But it is known what Vuforia does
on the image recognition in the DEVICE mode of the World Center Mode: It moves the
image target game object to a new position.

A way to intrude into Vuforia’s actions would be scripts which monitor the movement
of image target game objects. Such a script could be added to the game object which is
the target of the transformation and extend the functionality or restrict Vuforia:

public class OnVuforia : MonoBehaviour {
protected Vector3 startingPosition;
// GUI-related members (...)
protected GameObject welcomePinGO;
// further location based objects which need actions (...)

void Start() {
this.startingPosition = this.gameObject.transform.position;
this.BeforeReference();

}

5. Spatial References 45

void Update() {
if (this.gameObject.transform.position != this.startingPosition) {

if (this.isHorizontalX() && isHorizontalZ()) {
this.OnReference();

}
}

}

protected bool isHorizontalX() {
float angle = this.gameObject.transform.localEulerAngles.x % 360;
return angle < 2f || angle > 358f;

}

// same method for z-axis (...)

protected void BeforeReference() {
foreach (

Renderer renderer in
this.welcomePinGO.GetComponentsInChildren<Renderer>()

) {
renderer.enabled = false;

}
}

protected void OnReference() {
this.trackingStatusGO.SetActive(false);

// show first pin
foreach (

Renderer renderer in
this.welcomePinGO.GetComponentsInChildren<Renderer>()

) {
renderer.enabled = true;

}

// disable recognition
this.gameObject.GetComponent<ImageTargetBehaviour>().enabled = false;

// stabilize horizontal positioning
this.gameObject.transform.localEulerAngles =

new Vector3(0f, this.gameObject.transform.localEulerAngles.y, 0f);

// update absolute positioned content (...)
}

}

In the initialization progress of the script, it stores the starting position of the target
game object in the member Vector3 startingPosition and executes the method Be-
foreReference() which disables all renderers of the first pin (called WelcomePinGO) to
have all content hidden before the detection.

The method Update() is the core functionality of this OnVuforia script. It checks
if the game object which is the image target changed its position since the beginning.
If it did, Vuforia detected the image and adjusted the position. Since Vuforia can even
detect the angle of the image which is very intolerant for small changes but the content
should be always parallel to the ground, the script checks if the angle is smaller than two

5. Spatial References 46

degrees in the x- and z-axis which indicates a correct track. Once the image is tracked
and the tracked rotation is in the tolerance, the method OnReference() is called which
activates the renderer of the first pin again, disables Vuforia’s image recognition, flat
the content out and repositions absolute positioned content.

Using this method, the tracking is not running all the time which is optimal per-
formance-wise but means once the image was tracked with enough precision, the scene
will stay in the referenced status; moving the whole scene by moving the image tracker
would not work which is not needed for this use-case but it should be kept in mind that
an application with moving trackers could not be stabilized like this.

5.3.2 ARCore

Basics and Target Database

ARCore is as well as Vuforia included using a package from the Unity Asset Store. Google
did a great job in already including some examples of how to use ARCore including its
image recognition and offers a lot of prefabs for a fast and easy setup.

Unlike Google’s prefab ARCore Device suggests, the First Person Camera must
not be parented by another game object since this leads to a wrong positioning of the
detection. ARCore seems to move the parent object around and relates the local position
with the scene instead of the global one. When using the prefab, the script ARCoreSes-
sion needs to be copied to the camera and the parent object removed. The script is the
core of ARCore and has a session configuration linked to it. The configuration allows to
set the plane finding mode to either horizontal, vertical or both – horizontal is enough
for the use-case – enable features such as light estimation and offers to preload already
an Augmented Image Database.

The creation of an Augmented Image Database for ARCore is greyed out for Unity
2018.1.0f2 : Free Edition, meaning either this is only possible on Pro versions of Unity
or it is simply not fully implemented in this version. But there is already an example
database in Google’s examples which can be changed accordingly to the needs. Just as
in using Vuforia, a target needs a visual reference and the width of the image in reality.

Further, the First Person Camera needs an ARCoreBackgroundRenderer for render-
ing the camera frames and a TrackedPoseDriver which makes further configurations
such as device, tracking type or changes of update-render-correlation possible. All of the
above steps, except the creation or edit of the database, are done automatically when
using the prefab ARCore Device.

Image Recognition

Unlike Vuforia, ARCore is not automatically placing objects parented by a target vir-
tuality object but need a custom controller script for actions. This may sound more
complicated but allows much deeper behavior control than Vuforia natively supports.
For this reason, a script called OnImageRecognition was created and added to an empty
game object called ImgRecogController:

public class OnImageRecognition : MonoBehaviour {
protected GameObject targetGO;
protected GameObject welcomePinGO;

5. Spatial References 47

protected bool correctlyPositioned = false;
private List<AugmentedImage> m_TempAugmentedImages = new List<AugmentedImage>();

void Start () {
this.BeforeReference();

}

void Update () {
if (this.correctlyPositioned) return;
if (Session.Status != SessionStatus.Tracking) return;
Session.GetTrackables<AugmentedImage>(

this.m_TempAugmentedImages, TrackableQueryFilter.Updated);

foreach (var image in this.m_TempAugmentedImages) {
if (image.TrackingState == TrackingState.Tracking) {

Anchor anchor = image.CreateAnchor(image.CenterPose);
if (this.isHorizontalX(anchor) && this.isHorizontalZ(anchor)) {

this.OnReference(anchor);
this.correctlyPositioned = true;

}
}

}
}

protected bool isHorizontalX(Anchor anchor) {
float angle = anchor.transform.eulerAngles.x % 360;
return angle < 2f || angle > 358f;

}

// same method for z-axis (...)

protected void BeforeReference() {
foreach (

Renderer renderer in
this.welcomePinGO.GetComponentsInChildren<Renderer>()

) {
renderer.enabled = false;

}
}

protected void OnReference(Anchor anchor) {
this.targetGO.transform.position = anchor.transform.position;
this.targetGO.transform.eulerAngles =

new Vector3(0f, anchor.transform.eulerAngles.y, 0f);
foreach (

Renderer renderer in
this.welcomePinGO.GetComponentsInChildren<Renderer>()

) {
renderer.enabled = true;

}
}

}

Unlike in the Vuforia build, it is not necessary to save the initial position of the
scene since the transformation of the content is done with the custom controller script
instead of relying on the automatic process of Vuforia. As done in the HoloLens script,

5. Spatial References 48

the method BeforeReference() which is called on the initialization of the application
is used for disabling all renderers of the first pin to have all content hidden before the
detection.

Again, the Update() method represents the main functionality of the script. As long
as the content was not correctly positioned and the tracking is enabled, the method
checks for updated data of the trackables. If updated data is found and the tracking
state is still the current state, the result of the query is used for generating an anchor
which represents the origin of the tracked image. Since the content should always be
horizontal, the algorithm for checking the angle around the x- and z-axis as used in
the Vuforia build is used to validate the tracking interpretation. The method OnRe-
ference() is called once the image was tracked and the orientation of the anchor was
validated.

The OnReference() method sets the transformation of the game object ImgRecog-
Target which parents Las Vegas (the visual content of the application) – which is set
as the targetGO (target game object) – to the transformation of the resulted anchor. To
trace the rotation of the image, the angle of the anchor around the y-axis is as well set on
the target. In the end, the rendering of the first pin is again enabled and the Update()
method stops the tracking by setting the member bool correctlyPositioned to true.

Chapter 6

Evaluation

This chapter contains method description, measurable values and results of all done
evaluations for network communication and spatial referencing (see chapters 4 and 5).

6.1 Network Communication

6.1.1 Closed Network
The goal of this evaluation is to find out the amount of delay between the activation
of a pin on an instructor device, the receipt of the network message on the server
and activation of the pin on another synchronized device. This delay should be hardly
distinguishable when multiple users talk about a seen content; to have a practical value:
A value below 1,000 milliseconds is needed, below 300 milliseconds is desirable. More
important than the actual value is the correlation between the use of a closed network
(a network only the users are connected to) and an open network (the system is running
in a network that is already in use with other tasks; compare section 6.1.2).

Method

The system is running in a closed network, so only the users of the application are within
the network and no further demanding network traffic is active. For this evaluation, a
mobile hotspot is created with a Samsung Galaxy S8 which is executing the instructor
application (ARCore version). The Microsoft HoloLens is running the controller appli-
cation (HoloLens version) and a laptop (Windows 10, Intel i7 core) acts as the server
application in the network. The instructor will activate a pin using the instructor button
seven times for a valid average result.

Measurement

To be independent of possible differences in local timestamps, the delay is measured
visually using an action-camera (Apeman Trawo) recording the screens of the devices
in 120 fps (frames per second). The screens of all devices have a refresh rate of 60 fps
resulting in a tolerance of +0

−16 ms. The footage is interpreted frame by frame in VLC
player, using the plugin Jump to time v.2.1 for distinguishing the timing.

49

6. Evaluation 50

Figure 6.1: The activation on the instructor device (Samsung Galaxy S8), receipt on
the server (laptop) and remote activation of the pin on the HoloLens are recorded using
an action cam with 120 frames per second to be independent of the device’s timestamps.

Footage

The recordings of the runs (Run#.MP4) as well as screenshots of the key frames (Run#-
Activation.PNG, Run#Server.PNG and Run#Client.PNG) for calculating the delay are
saved on the DVD in the folder Evaluation/Network/Closed.

Conclusion

The tests in the closed network, only used for this application without additional traffic,
showed that the delay between activating a pin on a controller- or instructor-device and
having the pin activated on another device using the network messaging is usually a little
below 100 milliseconds (see figure 6.2). These results were expectable since, in earlier
tests without measurement, the resulted output of the narrator’s voice on multiple
devices sounded like an echo.

The results, especially Actor → Server, may vary since the visualization of the
activation is sometimes slower or harder to interpret. In run 4 the visualization was
even slower than the sending of the message which led to an invalid measurement.

The evaluation is satisfactory but the more important evaluation is the comparison
to an open network with other traffic if additional network usage would increase the
delay which is presented in the following section.

6.1.2 Open Network

Goal

The goal of this evaluation is the same as the goal of the evaluation within a closed
network (described in section 6.1.1). Further, this evaluation is additionally done to find
out if additional network traffic is increasing the delay of the network synchronization.

Method

The system is running in an open network, so the network is not only for the system but
is used by others for different (demanding) tasks as well. For this evaluation, my home-
network is used which consists of multiple access points and terminals. Again, a Samsung

6. Evaluation 51

Run Actor → Server Server → Client Actor → Client
1 16ms 25ms 41ms
2 42ms 50ms 92ms
3 57ms 49ms 106ms
4 invalid measurement
5 42ms 59ms 101ms
6 25ms 42ms 67ms
7 91ms 59ms 150ms

Figure 6.2: The results of the tests regarding the delay in a closed network. The measured
time is based on a 120fps recording (approx. 8 milliseconds per frame). The screens of
the devices have a refresh rate of 60 frames per second, resulting in a tolerance of +0

−16
milliseconds between measurement and action.

Galaxy S8 is used as an instructor but this time with simultaneous music streaming
using Spotify and the laptop acting as server is watching YouTube videos. Additionally,
another device within the network will copy data in the Local Area Network.

Measurement

The measurement method is the same as the one for the closed network evaluation (see
section 6.1.1).

Footage

The recordings of the runs (Run#.MP4) as well as screenshots of the key frames (Run#-
Activation.PNG, Run#Server.PNG and Run#Client.PNG) for calculating the delay are
saved on the DVD in the folder Evaluation/Network/Open.

Conclusion and Comparison

In general, the tests in the heavily used open network show only small differences, with
the average values around 100 to 120 milliseconds (see figure 6.3). It is hard to tell if
this is due to the network traffic since even in the closed network the devices could use
additional data because it is still connected to the internet.

In any case, it is a pleasant result that in bigger networks and heavy workloads
within it there is barely any higher delay, probably due to small package sizes.

6.1.3 Synchronization Exceptions

Goal

On connection loss, the application stops in the state it is in and all permissions granted
by accepting the role should be removed. This behavior is important to avoid failures
in synchronization.

6. Evaluation 52

Run Actor → Server Server → Client Actor → Client
1 58ms 67ms 125ms
2 16ms 151ms 167ms
3 42ms 17ms 59ms
4 82ms 33ms 115ms
5 50ms 33ms 83ms
6 25ms 41ms 66ms
7 58ms 67ms 127ms

Figure 6.3: The results of the tests regarding the delay in an open network. The measured
time is based on a 120fps recording (approx. 8 milliseconds per frame). The screens of
the devices have a refresh rate of 60 frames per second, resulting in a tolerance of +0

−16
milliseconds between measurement and action.

Method

To cover the target of this thesis project, the application is run with three devices
involved: A laptop which will execute the server application, the HoloLens is taking
control over the application with the controller role and a Samsung Galaxy S8 will run
the instructor application. This test case is done multiple times, each time a device will
be disconnected from the network and the resulting behavior is examined.

Results and Conclusion

Disconnect of Controller: On the disconnection of the controller, the controller is not
able to activate any pins locally and a floating message "Reconnecting..." appears.
Server-sided, the disconnect is logged and the controller role is free to use again. Once,
the connection was built up again, the controller connected with the server, received
the permissions and was able to control the application again.

Disconnect of Instructor: If the connection of the instructor fails, the access to the
instructor buttons is denied (greyed out) and a message "Reconnecting..." appears. The
server-sided behavior is the same as in the controller case, as well as the reconnection
works fine.

Disconnect of Server: Once the server disconnects, all connections are logged to be
closed after five seconds (due to the timeout). The controller and instructor lose all their
permissions and wait for a reconnect. Once the server application is restarted, both client
devices were able to reconnect automatically including granting their authorizations.

6.1.4 Further Interesting Evaluations
With the means available, not every test is possible to execute. An interesting evaluation
would be how the amount of connected users affects the delay between the receipt of the
network message on the server, activation of the pin on another synchronized device and
the difference between the first and last connected device. For the sake of the thesis, this
evaluation is not necessary because of the goal of a system that can be used to support

6. Evaluation 53

the wearer of the HoloLens using ARCore. The spectator-role was an additional idea
for opening up a session to multiple users which’ optimization would not be the core of
this thesis.

6.2 Spatial Evaluation

6.2.1 Tracking Stability on Movement

Goal

This evaluation should give an impression about the stability of the tracking and map-
ping of the two used technologies, the Microsoft HoloLens and ARCore. Although the
results of this evaluation are not validating any success of the Master’s thesis surround-
ings, this technical information can be interesting for the choice of technology in future
applications as well as it gives additional related information to the evaluation of the
space synchronization (see section 6.2.3).

Method and Measurement

The method and measurement of this evaluation are the same for both technologies:
The image marker used to position the scene is stuck to a tabletop as it would in the real
execution of the application. The devices will recognize the image until a stable detection
and transformation was done. A piece of paper with a printed 2D ruler is placed with
its origin at the bottom left corner of the virtual map. Once the preparation is aligned,
the user will walk around and look at the map from different angles, just as a viewer
would. After approximately half a minute of movement, the same corner of the map is
marked on the piece of paper, resulting in the displacement of the virtual coordinate
system showing the stability of the tracking. This procedure will be done five times to
see possible patterns and usual results.

Measurement Tolerance

Due to the visual tracking used in ARCore, it is not possible to come as close to the
bottom left corner of the map as it is with the HoloLens since ARCore would lose its
tracking because there are not enough valuable tracking references in the rendering.
Especially on the ARCore evaluation, the measurement of the coordinate system shift
will be measured from a further distance, leading to a less precise result. For both
systems, the resulting points will be shown as circles which are bigger the less precision
is possible on the measurement due to shifting of the holograms or other issues.

Conclusion

The results (see figure 6.4) show that the HoloLens has a very high level of precision in
tracking and again detecting its references. The HoloLens stayed in all five runs below
the one-centimeter mark of tracking errors on movement. ARCore’s results of usually
up to three centimeters seems reasonable and are still satisfying for a visual system and
its low (or non-existent) price point. On visual checks, changes in the angle of the map

6. Evaluation 54

Figure 6.4: The results of calibrating the position of the map, half a minute of usual
viewing movement and measuring the position difference in ARCore (left image) and on
the HoloLens (right image).

were very slight or not recognizable on both systems. The runs showed a tendency to
drift the content rather to the left and closer to the viewer, especially for ARCore, which
will be confirmed in section 6.2.3.

6.2.2 Image Recognition

Goal

Depending on the size and orientation of the physical image marker which should be
recognized, the user has to go in direction of it, have it in sight and in the best case it is
not needed to directly look at it to get the reference of it. This evaluation is done with
ARCore’s native image recognition on and on the HoloLens using Vuforia.

Method

The physical image is placed on a table with a light background. The user will come
closer to the table until the image is recognized and a simple augmented object is placed
above it. To learn more about the result differences depending on size and orientation,
in one test case the image is rather small (15 by 8 centimeters) followed by another
test with a bigger image (30 by 16 centimeters) and last but not least the bigger image
is stuck to a standing card box, oriented for a clear flat rendering instead of a warped
image when used horizontally.

Measurement: ARCore

The evaluation values are the direct distance to the origin of the image at the first
recognition; the higher the values the better for a clean recognition. The values are
directly measured in a test application using the following method:

6. Evaluation 55

ARCore uses a given controller script which defines what to do on the recognition,
on the first recognition the distance between the image detection’s resulting anchor and
the camera object is measured and printed on the screen.

public class AugmentedImageExampleController : MonoBehaviour {
// ...
public void Update() {

if (Session.Status != SessionStatus.Tracking) { return; }

// Get updated augmented images for this frame.
Session.GetTrackables<AugmentedImage>(

m_TempAugmentedImages, TrackableQueryFilter.Updated);

foreach (var image in m_TempAugmentedImages) {
if (image.TrackingState == TrackingState.Tracking) {

// get anchor and position object above it (...)

if (!this.DistanceInformationGO.activeSelf) {
this.DistanceInformationGO.SetActive(true);
this.DistanceInformationGO.GetComponent<Text>().text =

"Distance: " +
Mathf.Floor(Vector3.Distance(

this.lastAnchorPosition,
this.CameraGO.transform.localPosition

) * 100)
+ "cm";

}
}

}
}

}

Measurement: Vuforia

Vuforia is a closed system which does not allow to interrupt or extend the detection
process without deeper intrusion. To display the distance to the detected image, an
additional script is continuously checking the position of the object which represents
the image in virtuality. Once the position of the object changes, Vuforia detected the
image and transforms the recognition object to the reference in reality. The moment
this transformation is detected, the script displays the distance between the resulting
position and the camera, just as done in the ARCore evaluation.

public class DistanceInformationDebugger : MonoBehaviour {

private Vector3 startingPosition;
public GameObject CameraGO;
public GameObject DistanceInformationGO;
private bool changed = false;

void Start () {
this.startingPosition = this.gameObject.transform.localPosition;

}

6. Evaluation 56

void Update () {
if (!this.changed) {

if (this.startingPosition != this.gameObject.transform.localPosition) {
this.changed = true;
this.DistanceInformationGO.SetActive(true);

this.DistanceInformationGO.GetComponent<TextMesh>().text =
"Distance: " +
Mathf.Floor(Vector3.Distance(

this.gameObject.transform.localPosition,
this.CameraGO.transform.localPosition

) * 100)
+ "cm";

}
}

}
}

Footage

The recordings of the runs (Run#.MP4) for the ARCore evaluation are stored on the DVD
in the folder Evaluation/ARCore Image Recognition/ containing the folders 15cm,
30cm and 30cm Vertical for the corresponding test cases. The same folder structure
exists for the Vuforia evaluation in the folder Evaluation/Vuforia Image Recogni-
tion/.

It is important to notice that the renderings of the HoloLens look like Vuforia did
not perfectly recognize the position of the reference. Looking through the glasses, the
application was always fitting perfectly; the difference is created by Microsoft’s Mixed
Reality Capture which seems not to perfectly align reality and virtuality.

Conclusion

In general, figure 6.5 shows that Vuforia seems to be faster in detecting images (about
double the distance), even at steeper angles and therefore more warped images. For
both frameworks, variation in size results in slight changes in recognition distance but
the image is still warped when approaching the table, making the detection harder. On
the other hand, orienting the image vertical – by, for instance, sticking it to a wall –
makes it possible to recognize the image from a further distance; Vuforia is capable of
recognizing it from about three times further than ARCore. Further, ARCore is not
as good in mapping vertical objects as in mapping horizontal objects which results in
detecting the image sometimes faster than the wall it is stuck to. This could lead to a
wrong positioning in the first place which should fix itself once the vertical mapping is
completed – this usually took around one second at the maximum; Vuforia was able to
identify and correctly position it on every try, no big re-adjustments needed.

6. Evaluation 57

Run Horizontal 15x8 Horizontal 30x16 Vertical 30x16
1 44cm | 88cm 61cm | 116cm 67cm | 193cm
2 46cm | 92cm 50cm | 118cm 85cm | 198cm
3 40cm | 91cm 41cm | 117cm 71cm | 196cm
4 30cm | 90cm 68cm | 115cm 85cm | 210cm
5 39cm | 87cm 79cm | 117cm 86cm | 203cm

Figure 6.5: The distances the systems detected the images from. The first value shown
is the distance for ARCore, the second is the result of Vuforia.

6.2.3 Space Synchronization

Goal

The evaluation of the image recognition (see section 6.2.2) was only done regarding
the detection range but not about the precision of the positioning since the reference
objects were rather small. Using the full application which places a map with a width
of about two meters referenced on the 30 by 16 centimeter image reference, the goal is
to find out about the differences of Vuforia’s and ARCore’s image detection precision.
The resulting outcome includes tolerances of both systems in referencing and tracking
stability, therefore the results of the tracking stability in section 6.2.1 should be kept in
mind since they are affecting the results of this evaluation as well.

Method and Measurement

Just as in the evaluation of the tracking stability (see section 6.2.1), the image target
is used to position the scene on the table. The image recognition will be done first on
the Microsoft HoloLens and a piece of paper with a printed 2D ruler is placed with
its origin at the bottom left corner of the transformed map. Afterward, the ARCore
application is started and used to track the image as well and position the map related
to it. The difference of positioning can then be seen and marked on the paper at the
bottom left corner of the map. This is the most valuable evaluation in the area of
spatial functionality since it is the difference which will be experienced by the users of
the application and therefore will be tested seven times to interpret possible behaviors.

Conclusion

The difference between the map position on the HoloLens and ARCore (displayed in
6.6) are satisfying with a usual displacement of five centimeters at maximum. Very
interesting is the pattern of the spatial synchronization error which is quite dense but
moved three to five centimeters to the left which might be related to the stability results
of ARCore in section 6.2.1. In the evaluation, ARCore already tended to displace the
coordinate system rather to the left front which is confirmed in this evaluation as well.
Further interesting evaluations would be the displacement when using a differently sized
marker to see if the displacement error is bound to the size of the image target or just
refers to a general error of about five centimeters which was the maximum error in the
stability evaluation as well.

6. Evaluation 58

Figure 6.6: The results of calibrating the position of the map on the HoloLens and
marking the position of the map detected on ARCore.

Chapter 7

Closing Remarks

The results of the evaluations and watching the progress from a standalone application
for the Microsoft HoloLens and ARCore-supporting devices to a working system which
synchronizes the application’s content in time and space are very satisfying. Tests with
friends and family showed the pleasure and astonishment Shared Augmented Reality
Experience offer, especially when persons are able to discuss the seen and just point
at a point of interest and act as if the holograms were real. Showing the application
even technology-foreigners with full control over their actions and immediately seeing
possible problems in controls and managing them in real-time in the same space is an
advantage for developers of programs and supervisors.

ARCore’s tracking, mapping and reference recognition is not at an impressive point
in development compared to superior systems as the HoloLens offers but is still very
valuable due to the simplicity in terms of hardware requirements and accessibility which
clearly shows that the visual systems are on a good way to be used in daily life. The
precision of the HoloLens’s tracking and mapping as well as the strength of Vuforia in
combination with the smart glasses are still not comparable with any other solutions
which definitely makes the HoloLens the exemplary model for Augmented Reality and
its possibilities. Exactly this is the importance of the system created in the progress
of this Master’s Thesis, the HoloLens is an unbelievable powerful Augmented Reality
device bringing Augmented Reality to a new level but due to new interactions not
everyone is able to control or even set up the device in the beginning, possibly resulting
in a tremendous first experience with it or Augmented Reality in general which such a
cross-platform Shared Experience solution could prevent.

The future of this system is further testing and optimizing, using it as well in the
additional development of applications and finding similarities between the applications
creating a knowledge base for a possible implementation of a framework which could
be used to offer more Shared Experiences in Augmented Reality. In addition to the
standalone features of each device, sharing additional data which the devices are spe-
cialized for could improve Augmented Reality on all devices: The advanced mapping
information of the HoloLens could be shared with the ARCore devices making dynamic
occlusion possible on the smartphone solution or the data of the real light estimation
of ARCore could be applied to the virtual lighting of the HoloLens application.

59

Appendix A

Technical Details

A.1 Project
The use-case itself – a holographic information application describing the rules and
general information about the Red Bull Air Race – was implemented in Unity 2017.3.0b9
starting October 2017 until February 2018. From this point on, the networking and
spatial features were programmed in Unity 2018.1.0f2 due to better implementation of
ARCore functionality. From start to finish, Visual Studio 2017 was used for writing the
required C# scripts.

Built versions of the ARCore application are saved on the DVD as apk files which
can be installed on any device with Android 8.0 (Oreo) or higher. Keep in mind, the
permission about third-party applications needs to be enabled in the Android settings
and the application requires ARCore; if the device supports ARCore but is not installed,
the application will download and install it automatically. In other cases, toast messages
(Android’s messages in bubbles) will inform the user about the status of their device in
relation to ARCore.

The built HoloLens application is as well available on the DVD but as a Visual
Studio Project. In order to build and deploy it to a HoloLens, the PC must be set up for
HoloLens development which is described in Microsoft’s Beginner Guide for HoloLens.

A.2 Thesis
This thesis was written using ShareLATEX – a free online LATEX-editor – which merged
later in 2018 into Overleaf using the Hagenberg LATEX template.

Most figures showing structures or flow diagrams were created using draw.io which
offers designing and creating many different types of graphs.

60

Appendix B

DVD Contents

Format: DVD, Single Layer, ISO9660

B.1 Evaluation

./
Evaluation

ARCore Image Recognition
15cm
30cm
30cm Vertical

Network
Closed
Open

Vuforia Image Recognition
15cm
30cm
30cm Vertical

The footage for all evaluations is within the folder “Evaluation”. Every listed subfolder
contains the runs as *.mp4 files; the network folders additionally contain screenshots of
the essential moments of the evaluations including timestamps.

B.2 Project

./
Project

ARCore
Microsoft HoloLens
Server

In every folder listed above, there is a file RedBullAirRace.zip which contains the Unity
project for a specified use as the folders are labeled. Every project has the following folder
structure:

61

B. DVD Contents 62

RedBullAirRace
Assets

(...)
Scenes
Scripts
(...)

Builds
(...)

The folder “Scripts” contains all scripts written for this project. The usage of the scripts
in Unity and structure of game objects can be seen in the scene which is in the folder
“Scenes”. The projects for the different platforms are already built in the folder “Builds”
which just need to be executed on the devices; the HoloLens version is a built Visual
Studio C# project and needs to be built by following the instructions in appendix A.

B.3 Thesis

./
Thesis

Source
Thesis.pdf

A digital copy of this thesis as well as the source code of this thesis written in LATEX is
available in the folder “Thesis”.

References

Literature

[1] Stefan Auer. “Augmented-Reality: Entwicklung und Evaluierung eines be-
nutzerzentrierten Prototypen für das Red Bull Air Race”. Masterarbeit. Hagen-
berg, Austria: University of Applied Sciences Upper Austria, Human Computer
Interaction, June 2018 (cit. on p. 8).

[2] Paul Milgram and Fumio Kishino. “A taxonomy of mixed reality visual displays”.
IEICE TRANSACTIONS on Information and Systems 77.12 (1994), pp. 1321–
1329 (cit. on p. 3).

[3] Diederick C. Niehorster, Li Li, and Markus Lappe. “The Accuracy and Precision
of Position and Orientation Tracking in the HTC Vive Virtual Reality System for
Scientific Research”. i-Perception 8.3 (2017). url: https://doi.org/10.1177/20416
69517708205 (cit. on p. 37).

[4] Dion Pike. Master-slave communications system and method for a network ele-
ment. Sept. 27, 2001. url: https://patents.google.com/patent/US7460482B2/en
(cit. on p. 13).

Online sources

[5] North of 41. What really is the difference between AR/MR/VR/XR? 2018. url:
https://medium.com/@northof41/what-really-is-the-difference-between-ar-mr-vr-x
r-35bed1da1a4e (cit. on p. 3).

[6] Asus ZenFone AR. url: https://www.asus.com/Phone/ZenFone-AR-ZS571KL/
(cit. on p. 5).

[7] CurvSurf’s Find Surface. url: http://www.curvsurf.com/ (cit. on p. 2).
[8] Environmental understanding of ARCore. url: https://developers.google.com/ar

/discover/concepts#environmental_understanding (cit. on p. 5).
[9] Google’s ARCore. url: https://developers.google.com/ar/ (cit. on p. 5).

[10] Google’s Project Tango. url: https://get.google.com/intl/de/tango/ (cit. on p. 4).
[11] Microsoft’s HoloLens. url: https://www.microsoft.com/hololens/ (cit. on p. 4).
[12] Presentation of ARCore’s image recognition. url: https://youtu.be/xo54ldvOO34

(cit. on p. 7).

63

https://doi.org/10.1177/2041669517708205
https://doi.org/10.1177/2041669517708205
https://patents.google.com/patent/US7460482B2/en
https://medium.com/@northof41/what-really-is-the-difference-between-ar-mr-vr-xr-35bed1da1a4e
https://medium.com/@northof41/what-really-is-the-difference-between-ar-mr-vr-xr-35bed1da1a4e
https://www.asus.com/Phone/ZenFone-AR-ZS571KL/
http://www.curvsurf.com/
https://developers.google.com/ar/discover/concepts#environmental_understanding
https://developers.google.com/ar/discover/concepts#environmental_understanding
https://developers.google.com/ar/
https://get.google.com/intl/de/tango/
https://www.microsoft.com/hololens/
https://youtu.be/xo54ldvOO34

References 64

[13] Red Bull Air Race. url: http://airrace.redbull.com/ (cit. on p. 8).
[14] Simulation of the functionality of SteamVR’s tracking. url: https://youtu.be/J54

dotTt7k0 (cit. on p. 38).
[15] Spatial mapping of Microsoft’s HoloLens. url: https://docs.microsoft.com/en-us

/windows/mixed-reality/spatial-mapping/ (cit. on p. 4).
[16] Visualization of the HoloLens’ spatial mapping. url: https://youtu.be/zff2aQ1Ra

Vo (cit. on p. 40).
[17] Vuforia. url: https://www.vuforia.com/ (cit. on p. 41).

http://airrace.redbull.com/
https://youtu.be/J54dotTt7k0
https://youtu.be/J54dotTt7k0
https://docs.microsoft.com/en-us/windows/mixed-reality/spatial-mapping/
https://docs.microsoft.com/en-us/windows/mixed-reality/spatial-mapping/
https://youtu.be/zff2aQ1RaVo
https://youtu.be/zff2aQ1RaVo
https://www.vuforia.com/

Check Final Print Size

— Check final print size! —

width = 100mm
height = 50mm

— Remove this page after printing! —

65

	Declaration
	Preface
	Abstract
	Kurzfassung
	Introduction
	Mixed Reality Technologies
	Mixed, Virtual and Augmented Reality or Virtuality?
	Evolution of Augmented Reality
	3D Augmented Reality in Own Hands
	Standalone Device for our Heads
	Computer Vision Knowledge for Better Accessibility

	Shared and Isolated Experiences
	System-internal Synchronization
	Isolated Experience

	Multi-Platform AR Experiences as a Solution for Isolated Experiences

	Red Bull Air Race Holo-Info
	About Red Bull Air Races
	Presentation and Course of Action
	Instruction and Possible Manipulations
	Augmented Reality Interfaces
	GuidePin and PilotPin
	Pin-Managers

	Communication
	Workload distribution
	Roles
	Server
	Controller
	Instructor
	Spectator

	Networking in Unity
	Multiplayer Optimization in Unity 5
	Using the Legacy Networking

	Network Procedure
	Brief Overview
	Direct Connection Messages
	Role Messages
	Device Transformation and Timeout
	Changes of the Application

	Implementation
	Messages
	Roles
	Outsourcing Permissions
	Server Functionality
	Client Functionality

	Spatial References
	Requirements and Options
	Absolute and Relative Tracking
	Static and Dynamic Mapping
	Referencing

	Concept
	Implementation
	Vuforia on the HoloLens
	ARCore

	Evaluation
	Network Communication
	Closed Network
	Open Network
	Synchronization Exceptions
	Further Interesting Evaluations

	Spatial Evaluation
	Tracking Stability on Movement
	Image Recognition
	Space Synchronization

	Closing Remarks
	Technical Details
	Project
	Thesis

	DVD Contents
	Evaluation
	Project
	Thesis

	References
	Literature
	Online sources

